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Abstract: In this article, the importance of correct representation of input data for recurrent neural 

network is experimentally analysed on the basis of the task for recognizing handwritten digits and 

task for incrementing an integer. In order to solve this task, the same information in a different 

form is provided for the neural network and quality of classification is evaluated. It was received, 

that a simple permutation of inputs has caused the decrease of quality from several percentage 

points (for short sequences, e.g. incrementing 32-bit integer in binary) up to 15% for long ones 

(784 steps). In addition, the phenomena that models examining the depiction of handwritten digits, 

presented in a horizontal way converge on average faster than analogue models with vertical digit 

representation. 

Keywords: recurrent neural networks, handwriting recognition, training models. 

1. Introduction 

Neural networks and deep learning methods have demonstrated the impressive results in 

many areas: speech recognition (Hinton et al., 2012), medical diagnostics (Rajpurkar et 

al., 2017), pattern recognition (Krizhevsky et al., 2012), machine translation (Vaswani et 

al., 2017) and many others. 

In general, neural network is a special form complex non-linear function f(x), which 

parameters are being optimized with the help of gradient methods and algorithm of back 

error propagation (e.g. (LeCun et al., 1998)). Thus, during the training algorithm gets the 

collection of pairs S = ((x1, y1), … , (xm, ym)), xi X, yi   Y , where xi is a task input 

(e.g. graphical file with a handwritten digit) and yi is a corresponding answer (e.g. 

recognized digit). The task of training algorithm is to get a function f, which insures the 

best mapping approximation of X ↦ Y on x   X, that were not included in S. 

The majority of neural networks (e.g., feedforward or convolutional (LeCun et al., 

1989)) present themselves a composition of functions, i.e. 11 ffff nn   , 

where each of fi – is a non-linear function, representing matrix multiplication and non-

linearity (e.g. sigmoid). In such a case, parameters are usually matrix elements that 

participate in matrix multiplication.  

Below, general application of such a model for recognizing handwritten digits is 

reviewed. Assume, that each digit is presented by a graphical file of size 100 by 100 
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pixel. Each pixel is characterized by 3 numbers of R-, G- and B- components intensity in 

RGB colour representation scheme. In such a case information stored in such a graphical 

file can be represented in a form of numeral vector of size 3∙100∙100 = 30000 – xi (in our 

MNIST experiments we have grayscale images with size 28x28, so our vectors have size 

1∙28∙28=784). The problem solution, i.e. yi, can be presented as a 10-dimensional vector, 

in which all elements are equal to zero, except of exactly one element equal to 1, that 

corresponds to the digit, presented on the picture. Then f(xi) can be seen as a vector in 

which each element is a probability, that the corresponding digit is shown from the point 

of view of a model. 

In that case f can be selected as follows: 
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Function uses P for transforming arbitrary numeral vector into probability distribution. 

The model received is called a neural network with one hidden layer of a size of 128 

neurons (Fig.1). The size and the number of hidden layers are selected based on the 

problem and the size of data used for model training. 

However, neural networks of such type are not suitable for all the tasks. Suppose, the 

size of picture that should be analysed is of a free size and is not limited to 100 by 100 

pixels. Then the size of matrix A1 to be selected is not clear. However, in such a case the 

majority of parameters are useless. Also for the parameters, that are responsible for the 

bigger picture size it is rather difficult to find the necessary number of training samples. 

Of course, such an approach cannot solve a problem, when the initial size is not limited, 

as in case of translation or speech recognition. 

 

 

 

 

 

 

 

 

 

 

 

 
 Fig. 1. Outline of a neural network for solving handwritten digit recognition problem. 

Another option is to perform initial processing of incoming data. For example, in 

image recognition problems before applying the model image can be brought to the 
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canonical size by stretching or compression. Such an approach cannot be applied for the 

mentioned translation or speech recognition tasks.  

For such tasks, recurrent neural networks (e.g. (Jain and Medsker, 1999)) are used. In 

many cases problems with a variable input can be presented as a sequence of data of the 

same type. For example, for machine translation input text can be presented as a 

sequence of words: 𝑥𝑖 = (𝑥1, 𝑥2, … , 𝑥𝑙𝑖
) . For speech recognition in many cases the 

initial audio file is split into segments of a fixed length, e.g. 25 ms (see (Hinton et al., 

2012)). 
On a high level recurrent neural networks present themselves as a function g(xi, si-1) 

= (yi, si). Thus, this function has two entry points: xi is another sequence element, si – 

state of a neural network in a previous period. This function returns two outputs: yi is an 

answer on the i
th

 period and si is a state on a current period. This means that on each 

period, the same function g is used, and the number of its parameters does not depend on 

the sequence length (see Fig. 2). 

 

input : x = (x1, x2, … , xl) input sequence 
output: y = (y1, y2, … , yl)  output sequence 

s0 := 0; 

for i 1 to l do 

    yi, si = g(xi, si-1) 

end 

return y = (y1, y2, … , yl) 
 

Fig. 2. Recurrent neural network application algorithm 

Such a construction appeared to be very powerful, i.e. being able to calculate 

extremely complex functions: such networks are used for speech recognition (e.g. (Miao 

et al., 2015)). Moreover, in (Siegelmann and Sontag, 1995) the fact was proved, that for 

any function that is computable on a Turing machine it is possible to find a recurrent 

network that can approximate this function with a defined precision. 

However, in practice training of recurrent neural networks is so an easy task (refer to 

(Pascanu et al., 2012) for review of model training difficulties). Moreover, additional 

problem is based on that even format of input data has a great influence on model 

training effectiveness, i.e. it is not enough just to send available data to the input, but it is 

also necessary to structure it in a convenient way.  

Article is organized in a following way: in Part 2, a short literature review on the 

topic is performed, in Part 3 the experiments performed are described and in Part 4 the 

results achieved and future research topics are discussed. 

2. Prior and related works 

Recurrent neural networks were developed in 1980s (refer to (Goodfellow et al., 2016) 

for review). One of the first neural networks were Hopfield networks.  

Neural networks are difficult for training. The biggest obstacles for that are usually 

related to problems, caused by exploding and vanishing gradients. They are mainly 

related to the fact, that gradient, that carries information on error, passes through the big 

number of non-linearities (proportional to the depth of the network, and what is more 
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important, to the length of a sequence). This means that if gradient norm is multiplied by 

a number more than 1 while passing through the non-linearity, the norm will grow 

exponentially, causing numerical stability problems. 

The main method for dealing with exploding gradients is gradient clipping (please 

refer to (Pascanu et al., 2012) for a more detailed problem discussion). Vanishing 

gradients problem is usually solved by a proper architecture selection for the recurrent 

neural network. The most popular in this case are LSTM (Hochreiter, 1997) and GRU 

(Cho et al., 2014a) methods. They solve a problem by selecting a special gradient path 

that does not change its norm. As a result, even if the gradient has vanished on the main 

path, the additional path will protect against information losses. In (Chung et al., 2014) 

authors have compared different types of recurrent units and found that gated units (such 

as LSTM or GRU) are indeed better than traditional units and that GRU is comparable to 

LSTM. In (Jozefowicz et al., 2015) it was empirically found that careful initialization of 

bias in forget gate in LSTM closes the gap between LSTM and GRU models in all 

problems evaluated by the authors. We use LSTM, GRU and simple RNN models in our 

increment experiments. 

General review of neural networks and samples of their successful practical 

applications can be found in (Karpathy, 2015) and (Goodfellow et al., 2016). 

From a model point of view, many facts on the calculative power of recurrent neural 

networks were proved. The most important result is the proof of their equivalence to the 

Turing machine (Siegelmann and Sontag, 1995). In (Khrulkov et al., 2017) the theorem, 

stating that a special kind of recurrent neural networks is exponentially better than one 

layer convolutional networks, was proved, i.e. that it requires less parameters for 

achieving the same quality of results. For our digit recognition experiments one-layer 

recurrent neural networks will be used. For quicker convergence the initialization 

scheme, proposed in (Le at al., 2017) will be applied. 

Regarding MNIST datasets and object recognition in general, convolutional neural 

networks are better suited for the task. For example, (Ciresan et al., 2012, Jarrett et al., 

2009, Ranzato et al., 2006) report several ways to train and build CNN model to get 

recognition accuracy of 99.5% or higher. The core idea of this paper is not to achieve 

better accuracy, but to investigate the storage capacity of recurrent models. 

3. Experiments 

In the following subsections we present two experiments supporting the importance of 

correct representation of sequential data for recurrent neural networks. We use numerical 

data in the task of incrementing the integer (subsection 3.1) and images in the 

handwritten digits recognition problem (subsection 3.2). Both experiments show that the 

rate of the convergence is very dependent on the chosen data representation despite the 

same amount of information given to the model. 

3.1. Increment task 

In this subsection the experiments, related to the increment task of an integer were 

carried out. Number in a K-base numeral system of N digits with possible leading zeros 

was considered. The model task is to read the given number and provide a number 

increased by one (or to show zero if KN – 1 was given on input) as an output. 
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In the first experiment (let’s call it “simple”) on entry the number was provided on 

entry by one digit from lower order to higher. In the second experiment (to be called 

“complicated”) digits were provided in a random, but fixed within the frame of one 

experiment, order. 

In case of a “complicated” experiment model has not enough information to give “the 

first” digit of an increased number during the first step (since “the first” digit can be 

arbitrary to the digit in a permutated version, i.e. to be dependent on lower orders, that 

were not seen by the model on the first step. That is why the initial number was given to 

input two times and we were expecting to obtain the same orders for first K reports and 

increased orders for the second K reports. Explanations are provided on Fig. 3 and 

Fig. 4. 

 

 

 
 

Fig. 3. Sample input data for an increment task. N = 5, K = 4. Number x = 201334 = 54310, 

repeated two times is provided to input (please note, that number is provided in the order from 

lower to higher). On output we expect to obtain 2N digits: first of all N digits of initial number, 

then N digits of the increased number (in that exact case 54410 = 202004) 

 

 

 
 

Fig. 4. The same sample as on Fig. 3 but in “complicated” definition,  

namely after permutation [4, 0, 1, 3, 2]. 

 

Three architectures of recurrent neural networks were used: vanilla rnn (the same as 

in experiment with MNIST), lstm (Hochreiter, 1997) and gru (Cho et al., 2014b). In 

each experiment the minibatch of a size of 16, 5 epochs with 10240 minibatches in it, 

single layer neural network with the size of a recurrent cell equal to 16 elements and 

optimizer RMSprop with a learning rate of η = 3 · 10−4 were used. At the end of each 

minibatch the accuracy of the obtained model was calculated with the help of hold-out 

set. This set was formed of all possible KN, or, if the resulting size was more than 3 · 

105, of 3 · 105 random numbers of the same distribution, as the training set. 

In case if number is selected out of KN equally likely options, rather simple and 

“uninteresting” samples will be dominating in a measurable metric, where the lower 

order has just to be increased by one in order to perform the increment task. Because of 

that the distribution was modified to select an “interesting” sample with a 0.1 probability 

in the following way: 

 choosing an equally likely integer number T from  0 to N 
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 returning (KT − 1) + RK (N − T ) · KT , where RK (N − T ) – random number in 

a K-base numeral system of N − T digits. 

In such an interesting sample there will be at least T transfers from the lower to 

higher order. As it can be seen from Figures 5, 6, 7 in his experiment the similar 

behavior as in case with MNIST experiment is observed: in case of a “correct” of data 

provided for input model converges to optimum much quicker. In case of “complicated” 

case convergence is visible, but it is always much slower. 

 

 
 

Fig. 5.  Accuracy with K = 2, N = 32 

 

 

 
 

Fig. 6. Accuracy with K = 10, N = 7 
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Fig. 7.  Accuracy with K = 4, N = 15 

 

3.2. Recognizing of handwritten digits 

In this subsection we present the experiment carried out with MNIST dataset (LeCun 

and Cortes, 2010), which is used for recognizing handwritten digits. This dataset 

contains 60 000 samples for training and 10 000 samples for testing. Each sample is an 

image of size 28 by 28 pixels. In Fig. 8, several samples from the dataset specified are 

presented. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 8. Samples of input data from the MNIST dataset 
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Table 1. Different representation of the same testing sample information. In each of the cases 

presented vectors are provided in the upside-down order. 

Case Example 

original  

transposed  

original random permute  

transposed random permute  

flattened  

transposed flattened  

flattened random 

 
 

 

 

Training of several models of the following types was performed: 

 original: each picture is a sequence of 28 vectors; each of it has a size of 28 

lines of initial image directed upside down; 

 transposed: equivalent to the original model, but each vector stores columns 

of the initial image from left to right; 
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 original random permute: equivalent to the original model, but the order of 

vectors is random (not compulsory to be upside down), still it is fixed for 

the training and testing sets. 

 transposed random permute: equivalent to the original random permute, but 

each sequence element is a column of an image, not a row; 

 flattened: each picture is a sequence of 784 single-size vectors, pixels are 

presented in a left-to-right and upside down order; 

 transposed flattened: each picture is a sequence of 784 single-size vectors, 

pixels are presented in an upside down and left-to-right order;  

 flattened random: each picture is a sequence of 784 single-size vectors, 

pixels are presented in a random order, but this order is fixed for the training 

and testing sets. 

In Table 1, different representation of the same testing image information is 

provided. 

Cases flattened random and flattened are in fact Permuted MNIST and Sequential 

MNIST from (Le et al., 2015). 

It can be noticed, that flattened representation complicates the digit recognition, since 

adjacent image pixels can be distinct from one another in the representation. So for a 

neural network, that works with rows, it is necessary to understand, that for example in 

case of digit 1 white pixels should follow after 28 counts to form a white vertical line. 

The same is to be said for a neural network working with columns in case of the 

horizontal line in digit 7. 

Even more complicated task is for a model that works with any kind of a random 

permutation. In these cases, proximity in representation does not mean that there is the 

proximity in image. Nevertheless, for any function of an orderly sequence a function 

returns the same answers for a random case. That means that in case of ideal selection of 

training parameters and big amount of data in both cases the same result will be 

achieved.  

For each representation option we were training a single-layer recurrent network with 

a size of 128 neurons with the help of RMSProp algorithm (Tieleman and Hinton, 2012), 

batch size was equal to 16 images and the learning rate was equal to 3 10
5
 and 10

6
. Two 

parameter options were selected for more reliable determination of data representation 

option. 

For all random variation, training was performed on three different permutations in 

order to remove random fluctuations. Training with the help of Keras framework 

(Chollet, 2015) took two weeks on a 4-core computer. Models were training with the 

help of a cross entropy function between the last element of the output sequence and the 

correct answer. 

The source code used in experiments can be found at 

https://github.com/kolesov93/rnn-memory . 

The best model for each option are presented in Table 2. Table 3 provides a more 

detailed information on each of training launches. 

It was also noticed during model training, that cases, that analyse the picture in a left-

to-right order (transposed) converge to a good result almost always faster, than cases, 

when picture in a vertical direction. We suppose, that this is related to the fact that digits 

are stretched more to the height, rather than to the width. The model has fewer 

“interesting” instances that are worth attention. The remaining instances (e.g. a couple of 

first and last that are almost always black) deserve less attention. For hypothesis proof 
  

https://github.com/kolesov93/rnn-memory
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Table 2. Average number of counts necessary for the model to stop changing the answer. 

model latency 

original 23.3126; 21.7976 

transposed 16.7835; 19.5972 

original random permute 23.1492; 22.0422; 22.2437; 20.7726; 22.114; 23.1491 

transposed random permute 15.757; 15.8633; 16.4686; 17.2456; 15.4135; 15.5195 

 

Table 3. Top scores of each model by accuracy from a testing set. Name of the model is coding 

the way of data presentation (optional permutation number) @ batch size @ size of a hidden layer 

@ learning rate. 

model epoch acc vacc loss vloss 

transposed@16@128@3e-05 118 0.988 0.979 0.058 0.135 

original@16@128@3e-05 74 0.980 0.978 0.075 0.107 

transposed random permute 2@16@128@3e-05 75 0.972 0.964 0.105 0.178 

original random permute 0@16@128@3e-05 217 0.964 0.958 0.135 0.184 

transposed random permute 1@16@128@3e-05 186 0.968 0.955 0.133 0.247 

transposed random permute 0@16@128@3e-05 81 0.969 0.954 0.113 0.214 

original random permute 1@16@128@3e-05 104 0.955 0.954 0.177 0.195 

transposed@16@128@1e-06 242 0.948 0.949 0.180 0.179 

original random permute 2@16@128@3e-05 155 0.942 0.940 0.254 0.246 

transposed random permute 2@16@128@1e-06 234 0.934 0.934 0.223 0.225 

original@16@128@1e-06 239 0.931 0.932 0.234 0.229 

transposed random permute 1@16@128@1e-06 238 0.910 0.912 0.290 0.281 

transposed random permute 0@16@128@1e-06 239 0.909 0.911 0.304 0.311 

flattenned@16@128@1e-06 231 0.901 0.910 0.305 0.291 

original random permute 1@16@128@1e-06 242 0.906 0.905 0.311 0.321 

flattenned@16@128@3e-05 24 0.862 0.891 0.477 0.386 

transposed-flattenned@16@128@3e-05 116 0.861 0.891 0.499 0.397 

original random permute 0@16@128@1e-06 239 0.850 0.854 0.498 0.484 

original random permute 2@16@128@1e-06 234 0.851 0.852 0.487 0.488 

transposed-flattenned@16@128@1e-06 242 0.815 0.827 0.567 0.536 

flattened random permute 1@16@128@3e-05 142 0.712 0.764 0.887 0.741 

flattened random permute 2@16@128@3e-05 156 0.690 0.747 0.957 0.790 

flattened random permute 2@16@128@1e-06 232 0.715 0.744 0.849 0.763 

flattened random permute 1@16@128@1e-06 242 0.688 0.722 0.923 0.825 

flattened random permute 0@16@128@3e-05 243 0.694 0.720 0.932 0.855 

flattened random permute 0@16@128@1e-06 234 0.677 0.705 0.959 0.874 
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we have calculated a value, that was called latency, that shows how many counts does it 

take for the model to produce the result coincide with the final result and does not 

change after that. The average results were received from a separate sampling set. The 

latency results are provided in Table 4. 

As it can be seen, the transposed model makes a decision on 4-5 counts (out of 28!) 

earlier, compared to the analogical original model and the same tendencies remain for 

other permute cases. 

 

 
Table 4. Best models for each option 

model epoch acc vacc loss vloss 

transposed 118 0.988 0.979 0.058 0.135 

original 74 0.980 0.978 0.075 0.107 

transposed random permute 75 0.972 0.964 0.105 0.178 

original random permute 217 0.964 0.958 0.135 0.184 

flattened 231 0.901 0.910 0.305 0.291 

transposed-flattened 116 0.861 0.891 0.499 0.397 

flattened random permute 142 0.712 0.764 0.887 0.741 
 

 

Thus it can be noticed, that permutation decreases the classification quality by 

relative 0.7% for transposed case, by 1.4% for the original, by 16% for transposed 

flattened and by 14% for flattened. 

 

 
Fig. 9. Training curves for best cases in each of the groups 
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Image stretching into line also decreases the quality of classification, for example, 

original has decreased by 7% (0.979 to 0.910), and apart from that number of mistakes 

has increased 4.2 times. It is necessary to stress, that the quality decrease can be 

explained by a fact, that in initial model there are more parameters (since matrix 

multiplication is performed with a 28-column matrix, while in flattened case there is a 1-

column matrix). 

In Fig. 9, curves representing model by accuracy for a sample testing set in each of 

the groups are presented. 

4. Conclusions and future work 

It can be stated, that data representation format highly influences the convergence. It was 

empirically proven for data types: numerical data (in integer increment problem) and 

images (handwritten digits recognizing). 

However, it can be expected, that neural network will be able to determine 

dependencies in complicated conditions. For example, on Fig. 9 it can be seen, that best 

cases provide the result, close to an optimum already during the 10
th

 epoch. It takes 

longer for weaker cases to grow. However, in practice we cannot expect that any data 

representation case will lead to success due to a limited amount of data and limited 

calculation budget. For example, original random permute case was not able to minimize 

the lag from the best three cases even after 250 epochs. 

The phenomena that models examining the depiction of handwritten digits, presented 

in a horizontal way converge to the optimum on average faster than analogical models 

with vertical digit representation was noticed. The experiments proving our hypothesis, 

that such models require less counts for decision making on classification and more 

computational resources can be spend on classification itself, rather than on memorizing 

the sequence, were carried out. However, additional research is planned on that topic and 

should be carried out in future.  

In addition, additional topics for future work are defined:  

 Bigger depth allows models to produce more sophisticated functions. It is 

necessary to check, how the depth increase influences the speed of sequence 

memorization. 

 It is necessary to verify the achieved results on other data types like audio or 

text information. 
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