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Abstract. Real estate monitoring is very important aspect of country economics, but old manual 

methods of land survey are time and resources consuming processes as geodata actualization tasks. 

Actual, precise, multidimensional and detailed information is the main instrument of geospatial 

intelligence to understand current economic situation and to make effective decision. Actualization 

of geoinformation using remote sensing is the modern approach of the computer age to complete 

Earth observation and human environment monitoring. This article describes multi-stage 

classification model, which detects man-made constructions in LiDAR point cloud. Proposed 

classification model applies decision tree and geometrical features of shape to remove noises. The 

goal of study is to experimentally compare decision trees with crisp and fuzzy logic (ID3 

algorithms) to select the more suitable algorithm for noise reduction task. Algorithms are 

compared using total accuracy and Cohen’s Kappa coefficient.  

Keywords: classification, decision tree, features, fuzzy, ID3, LiDAR, real estate 

Introduction 

Land and rural development is important part of human existence, however, natural 

resources must be efficiently used considering different factors like environment 

protection, cultural heritage, the potential for development of tourism and 

manufacturing, legal and economic conditions, etc. The geospatial intelligence can take a 

correct decision about effective usage of Earth resources, only if they have precise and 

sufficiently detailed information about actual geospatial situation. Therefore geospatial 

data actualization must be completed on an on-going basis.  

Remote sensing is the modern approach of the computer age to complete Earth 

observation and monitoring providing relatively fast and cheap solutions to make 

geospatial data actualization, but the obtained data must be preprocessed to get statistical 

and semantical information for decision-making. The remote sensing data can be 

analysed manually, but it is time-consuming process due to massive amount of data, that 

makes necessary to develop the automatic data actualization systems with the high 

performance computing (HPC) solution. 

This research is a follow-up to HPC system development for real-estate actualization 

using LiDAR point cloud and computer vision (Kodors et al., 2017). The proposed 

system consists from three stages: 
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1
st
 stage: filtering of last return points in LiDAR point cloud to remove vegetation 

and other noises; 

2
nd

 stage: detection and segmentation of surface facilities using min-cut method; 

3
rd

 stage: classification of surface facilities to identify buildings among them; 

where the goal of each stage is to remove additional noise-objects (see Fig.1).  

 

 

 
 

Fig. 1. Classification system with multi-stage noise filtering 

 

 

The initial classification model has used filter by area to identify buildings among 

noise-objects (Kodors et al., 2017). The result of LiDAR point cloud processing is vector 

layer with building shapes prepared for geographical information systems (GIS). The 

obtained vector layer is compared with a previous layer to detect geospatial changes 

using an intersection of shapes. When geospatial changes are detected, image analyst 

must verify them using orthophoto, spectral images or LiDAR before to make data 

actualization. 

Geospatial data belongs to the big data. Therefore, despite the high recognition 

accuracy of system, even the error smaller than 1% provides too many false objects. To 

improve classification accuracy, it was decided to replace area filter with decision tree. 

The previous study was related with geometric feature selection to filter buildings from 

walls, robust trees, large cars and other surface objects using the random forest of 

decision trees with crisp logic. 11 geometric features were studied and 5 features were 

selected as the most effective for classification providing solution with total accuracy 

99% and Cohen’s Kappa coefficient 0.90 (Kodors, 2017). However, completing 

classification tasks some authors obtain better accuracy results using fuzzy decision trees 

comparing with crisp decision trees (Idri and Elyassami, 2011). Therefore, the goal of 

this study is to compare classification accuracy of two decision tree models: with crisp 

logic and with fuzzy logic; as a solution for building recognition using the geometric 

features of shapes. Additional task of study is to measure influence of correct 

classification probability into recognition accuracy and the loss of data, what can be 

applied to set verification priority for image analysts. 

1. Decision Trees and Remote Sensing 

Decision Trees are classification methods and algorithms with relatively long history. 

The idea of using decision trees to identify and to classify objects is firstly mentioned by 

Hunt et al. in 1996 (Sharma, 2013). Decision trees successfully find application in tasks 

related with classification using remote sensing data. For example, decision trees are 

applied to classify land covers using spectral images due to natural approach, when each 

pixel is analysed independently (Sharma, 2013), (Kulkarni and Shrestha, 2017), (Pooja 
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et al., 2011), (Kulkarni and Lowe, 2016). However, pixel-based methods become 

ineffective with resolution increase (Veljanovski et al., 2011), but it does not reduce the 

significance of decision trees as classification method, which found renaissance in 

processing of shape or segment features. For example, LiDAR point cloud can be 

projected into 2D grid using voxel indices with subsequent classification of each pixels 

(Nesrine et al., 2009); or shape can be described using mathematical parameters 

compatible with input of decision tree (Jamil and Bakar, 2006), that was applied in study 

(Kodors, 2017). 

Fuzzy Decision Trees are based on fuzzy logic introduced by Zadeh in 1965 (Idri 

and Elyassami, 2011). Completing experimental comparison, some authors obtain better 

accuracy results using fuzzy decision trees in place of decision trees with crisp logic (Idri 

and Elyassami, 2011). Fuzzy decision trees do not directly work with input data, each 

value is firstly preprocessed by membership function, which identifies strength of 

belonging to some subcategory of feature called event. Fuzzy trees have been applied for 

LiDAR processing before: pixel-based solution for forest boundary detection (Zhang et 

al., 2017) and object-based – for land cover classification (Syed et al., 2005). 

2. Materials and methods 

2.1. Dataset 

25 samples of LiDAR point cloud have been applied in the experiment. The dataset of 

LiDAR data was provided by the State Land Service of Latvia for research tasks. The 

data was collected considering next technical parameters (WEB, a): 

 the total minimal point density must be 4 p/m
2
, the DEM must have minimum 

1.5 p/m
2
; 

 the vertical precision must be 0.12 m with the level of confidence 95%; 

 the horizontal precision must be 0.36 m with the level of confidence 95%. 

The collected data was preprocessed, filtered and classified, each sample contained the 

point cloud with area 1 km
2
 and the minimal point density equal to 1 p/m

2
. 

The provided dataset was processed using next algorithm (Kodors et al., 2017): 

1
st
 step: LiDAR point cloud is filtered to retain only surface points (single and last 

return points). 

2
nd

 step: LiDAR point cloud is projected into 2D grid recording the maximally high 

point in cell of area 1 m
2
. 

3
rd

 step: the points with strong elevation (1.8 m) are marked as seed points for  

min-cut segmentation algorithm. 

4
th

 step: surface facilities are segmented using Dinic’s algorithm with Dijkstra path 

finding algorithm. 

5
th

 step: obtained segments are vectorised using 4-path (rook type) Theo Pavlidis’ 

algorithm to get shapes of object. 

Each shape was manually classified into two classes “buildings” and “noise” 

verifying each object using cadastral map, orthophoto and LiDAR data classified points. 

Total number of shapes is 844 284 with 99.68% of noise-objects. Total number of 

unique shapes is 19 999, where 2 428 (12.14%) belong to buildings and 17 825 (89.13%) 

are noises. 

5 geometric features (see Table 1) were calculated for each shape. The features were 

selected considering the previous study (Kodors, 2017). 
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Table 1. Geometric features of shapes 
 

Feature Equation Variables 

Area  pA  (1) p – geospatial area of pixel; 

a – major axis (length of minimal bounding 

rectangle); 

b – minor axis (width of minimal bounding 

rectangle); 

A – area of shape; 

P – perimeter of shape. 

Rectangularity 

ba

A
R


  (2) 

Form factor 2/ aAF   (3) 

Compactness 

A

P
C

2
1 

 (4) 

APC /2   (5) 

2.2. Features of Dataset 

The traditional classification methods with crisp logic try to find hyperplanes, which 

separate one class from other; however, classical logical reasoning is not effective due to 

intersection of feature values (see Fig.2-3). 

Unique samples of dataset (19 999) have been analysed with a goal to identify how 

many common samples belong to classes “buildings” and “noise” depending on the 

number of features (see Table 2). 

 

 
 

Fig. 2. Distribution of feature values for buildings and noise 
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Fig. 3. Distribution of feature values for buildings and noise 

Table 2. Decrease of common unique samples 

 

Set of Features Common samples From buildings Decrease  

{ C2 } 735 30.27% 69.73% 

{ C2, R } 316 13.01% 57.01% 

{ C2, R, F } 257 10.58% 18.67% 

{ C2, R, F, A } 254 10.48%  1.18% 

{ C2, R, F, A, C1 } 254 10.48%  0.00% 

Unique samples = 19 999, Buildings = 2 428, Noise = 17 825 

 

The analysis of common sample decrease depending on the set of features  

(see Table 2) has showed, that feature C1 does not minimize the number of common 

samples. The Spearman correlation between C1 and A is 0.626 for class “noise” and 

0.423 for class “buildings”, according to source (Kodors, 2017). If C1 is compared with 

C2, the equations have similar form. The correlation analysis (Spearman) for 254 

common samples has showed, that C1 has very weak correlation with A (0.039), 
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moderate – with C2 (0.456) and strong – with{ F (-0.707), R (-0.693) }. The feature A 

has very strong correlation with C2 (–0.838) and weak – with { F (0.223), R (0.183), C1 

(0.039) }.  

Completing the analysis of entropy (see Eq.1-2 (Sharma, 2013), (Pooja et al., 2011), 

(Kulkarni and Lowe, 2016) and see Table 3), the higher information gain is provided by 

features { C2, A, R }, that complies with features’ importance; but { C1, F } are weak 

features for cluster split. The conclusion is “A and C1 features do not replace each other, 

simply C1 is too weak in this case to decrease number of common samples”. 

 

𝐸(𝐷) = − ∑ 𝜌(𝑐𝑘) log2 𝜌(𝑐𝑘)𝑛
𝑘=1 ,   (1) 

 

where E – the entropy of dataset D, 

n – the number of classes; 

 𝑐𝑘 – a class; 

 D – a dataset; 

 𝜌(𝑐𝑘) – probability of class 𝑐𝑘. 

 

𝐺(𝑎𝑖) = 𝐸(𝐷) − ∑ 𝜌(𝑎𝑖𝑗)𝐸(𝐷 | 𝑎𝑖𝑗) 𝑣
𝑗=1 ,   (2) 

 

where 𝐺(𝑎𝑖) – an information gain of feature 𝑎𝑖; 

𝑎𝑖 – a feature; 

 j – a band of feature (subgroup of value range); 

 𝜌(𝑎𝑖𝑗) – probability, that a sample of feature 𝑎𝑖 belongs to a band j (see Eq.3); 

 𝐸( 𝐷 | 𝑎𝑖𝑗) – an entropy of subdataset ( D | 𝑎𝑖𝑗  ) (see Eq.1); 

 𝐸(𝐷) – the entropy of all dataset (see Eq.1). 

 

𝜌(𝑎𝑖𝑗) = | (𝐷 | 𝑎𝑖𝑗) |  𝑁⁄ ,    (3) 

 

where 𝜌(𝑎𝑖𝑗) – probability, that a sample of feature 𝑎𝑖 belongs to a band j; 

 𝑁 = |𝐷| – size of all dataset; 

 ( 𝐷 | 𝑎𝑖𝑗) – samples, which belong to a band j of feature 𝑎𝑖. 

 

Table 3. Information gain 

 

Feature Information gain Feature Information gain 

C2 0.344 F 0.132 

A 0.236 C1 0.101 

R 0.233 Entropy of dataset = 0.583 

 

So, there is not possibility to uniquely classify 254 shapes using the set of features  

{ C2, R, F, A, C1 }, however, each sample of shape has different probability to belong to 

each class (see Fig.4), which can be applied by classification system, when users get 

classified layer with probability coefficient for each shape. The frequency analysis is 

completed for each feature (see Fig.5). 

Frequency and distribution analysis is applied to define membership functions for 

fuzzy decision tree and to better understand each feature. 
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Fig. 4. Frequency separation for class “buildings” (BFreq) and “noise” (NFreq) in case of 254 

common unique samples, where X – ID of sample, Y – frequency 

 

 
 

Fig. 5. Frequency distribution in feature bands, where BFreq – frequency of buildings  

and NFreq – frequency of noise 
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2.3. Compared algorithms 

 

Interactive Dichotomizer 3 (ID3) 

 

Function: Create node 

Goal: to generate decision tree. 

Input: D – a training dataset, A – the set of features, C – the set of classes. 

Output: node of decision tree. 

Start 

If ( |𝐷| = 0 ) 

Return empty node (∅). 

 

Else-if ( ∃! |(𝐷|𝑐𝑘)| > 0 ) 

Return the leaf node of class 𝑐𝑘  ϵ 𝐶 with probability 1.0. 

 

Else-if ( |𝐴| = 1 ) 

Return the leaf node of feature 𝑎 ϵ 𝐴 with probability 𝜌(𝑐) of each class. 

 

Else 

Calculate the entropy E of dataset D using Eq.1; 

Calculate the information gain 𝐺(𝑎𝑖) using Eq.2 for each attribute 𝑎𝑖  ϵ 𝐴; 

Select the attribute with the maximal information gain 𝑎𝑚𝑎𝑥; 

Construct new node with the feature 𝑎𝑚𝑎𝑥; 

For each band b of the feature 𝑎𝑚𝑎𝑥 obtain subdataset 𝐷𝑏
′ ; 

Remove the feature 𝑎𝑚𝑎𝑥 from the set: 𝐴′ = 𝐴 − 𝑎𝑚𝑎𝑥; 

For each band of new node call the function “Create node” with the 

parameters ( 𝐷𝑏
′ , 𝐴′, C ); 

Return the node of decision tree with probability 𝜌(𝑐) of each class. 

End 

 

Function: Classify sample 

Goal: to classify sample. 

Input: n – a node of decision tree, s – a sample. 

Output: class and its probability. 

Start 

If ( n is leaf node ) 

Return class with the maximal probability in the current node n. 

 

 Else 

Select next node 𝑛′ by the band of node feature; 

 

If ( 𝑛′ = ∅ ) 

       Return class with the maximal probability in the current node n. 

 

Else 

Return output of the function “Classify sample” using parameters (𝑛′, s). 

End 
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Fuzzy Interactive Dichotomizer 3 (FID3) 

 

Introduction: FID3 is based on ID3 algorithm, the difference is the star entropy 

calculated using membership functions. A linguistic group of feature is called event and 

its probability is defined by the membership function (see example in Fig.6). 

 

Function: Create fuzzy node 

Goal: to generate fuzzy decision tree. 

Input: D – a training dataset, A – the set of attributes, C – the set of classes, 

M – membership functions. 

Output: fuzzy node. 

Start 

If ( |𝐷| = 0 ) 

Return empty node (∅). 

Else-if ( ∃! |(𝐷|𝑐𝑘)| > 0 ) 

Return the leaf node of class 𝑐𝑘  ϵ 𝐶 with probability 1.0. 

Else-if ( |𝐴| = 1 ) 

Return the leaf node of feature 𝑎 ϵ 𝐴 with probability 𝜌(𝑐) of each class. 

Else 

For each class 𝑐 ϵ 𝐶 calculate the star probability 𝜌∗(𝑐𝑘|𝑎𝑖𝑗) using Eq.6. 

For each feature 𝑎𝑖  𝜖 𝐴 calculate the star entropy E
*
 using Eq.4; 

Select feature 𝑎𝑚𝑖𝑛ϵ 𝐴 with the minimal star entropy 𝐸∗; 

Construct new fuzzy node with the feature amin; 

For each event g of feature amin obtain subdataset 𝐷𝑔
′  𝑐 𝐷; 

Remove the feature amin from set: A’ = A – amin ; 

For each event of new fuzzy node call the function “Create fuzzy node” with 

the parameters ( 𝐷𝑔
′ , A’, C, M ); 

Return the fuzzy node with probability 𝜌(𝑐) of each class. 

End 

 

Function: Classify sample 

Goal: to classify sample. 

Input: n – a node of decision tree, s – a sample, M – membership functions. 

Output: class and its probability. 

Start 

If ( n is leaf node ) 

Return class with the maximal probability in the current node n. 

 

 Else 

Select next node 𝑛′ by the membership function 𝑚 𝜖 𝑀 with the maximal 

output; 

 

If ( 𝑛′ = ∅ ) 

       Return class with the maximal probability in the current node n. 

 

Else 

Return output of the function “Classify sample” using parameters (𝑛′, s). 

End  
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Fuzzy Equations: 

 

𝐸∗(𝑎𝑖) = − ∑ 𝜌∗(𝑎𝑖𝑗)
𝑚𝑖
𝑗=1 ∑ 𝜌∗(𝑐𝑘|𝑎𝑖𝑗) log2 𝜌∗(𝑐𝑘|𝑎𝑖𝑗)𝑛

𝑘=1 ,      (4) 

 

where 𝐸∗(𝑎𝑖) – the star entropy of feature 𝑎𝑖; 

n – the number of classes; 

 𝑐𝑘 – a class; 

 𝑚𝑖 – the number of membership functions (events) of feature 𝑎𝑖  ϵ 𝐴; 

 𝜌∗(𝑎𝑖𝑗) – the star probability of event 𝑎𝑖𝑗  (see Eq.5); 

 𝜌∗(𝑐𝑘|𝑎𝑖𝑗) – the star probability of event 𝑎𝑖𝑗  for class 𝑐𝑘 (see Eq.6). 

 

𝜌∗(𝑎𝑖𝑗) = ∑ 𝜇𝑖𝑗(𝑑) / 𝑁,   (5) 

 

where 𝜌∗(𝑎𝑖𝑗) – mean star probability of event 𝑎𝑖𝑗; 

 N = | (D | 𝑎𝑖𝑗) | – the number of samples, which belong to event 𝑎𝑖𝑗; 

𝜇𝑖𝑗(𝑑) – a membership function j of attribute 𝑎𝑖; 

d – samples, which belong to event 𝑎𝑖𝑗  Sample belongs to event with the 

maximal output of a membership function in other words {𝑑 𝜖 𝐷 | 𝑎𝑖𝑗 ←

max 𝜇}. 

 

𝜌∗(𝑐𝑘|𝑎𝑖𝑗) = ∑ 𝜇𝑖𝑗(𝑑′) 𝑁′⁄ ,  (6) 

 

where 𝜌∗(𝑐𝑘|𝑎𝑖𝑗) – mean star probability of class 𝑐𝑘 in event 𝑎𝑖𝑗;  

 N’ = | (D | 𝑐𝑘) |– size of subdataset D, where all samples belong to class 𝑐𝑘; 

𝜇𝑖𝑗(𝑑′) – a membership function j of attribute 𝑎𝑖; 

d’ – samples, which belong to class  𝑐𝑘 and event 𝑎𝑖𝑗 . 

3. Results and discussions 

The obtained dataset was processed using ID3 and FID3 algorithms. Each algorithm was 

analysed using two training approaches:  

a) the algorithms are trained using dataset with the unique samples (see Tables 4a 

and 5a); 

b) the algorithms are trained using the full dataset with repeating samples (with 

probability of each sample), (see Tables 4b and 5b). 

Validation was completed using the full dataset with repeating samples, where the area 

of objects is greater than 10 m
2
 (this condition is defined in the previous study  

(Kodors, 2017)). 

The histogram bands of Fig.2-3 and Fig.5 were used by ID3 algorithm to construct 

the decision tree with the crisp logic. FID3 algorithm has used the membership functions 

manually defined using the distribution and frequency analysis of data (see Fig.6). 

The accuracy of each algorithm is evaluated using the confusion matrix, the total 

accuracy (A) and Cohen’s Kappa coefficient (K) (see Table 4 and 5). Additionally the 

results of experiments are compared with the random forest algorithm applied in the 

previous study (Kodors, 2017). 
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The result of experiment has showed, that a fuzzy decision tree can process unique 

samples, when a frequency about each sample is unknown (see Table 5a). However, ID3 

algorithm is more precise (see Table 4b), if there is a sufficiently large dataset to obtain 

probability of unique samples. This comparison of the algorithms identifies the 

importance of sample probability for ID3 algorithm. In contrast, a fuzzy decision tree 

applies knowledge about a sample probability hidden in membership functions. To 

verify the possibility of FID3 to identify unknown samples, the dataset of unique 

samples was split into the training dataset (20%) and the validation dataset (80%). The 

measurements were completed 1000 times and they provided next results:  

 Amin = 0.90687, Amean = 0.90988, Amax = 0.91292; 

 Kmin = 0.54366, Kmean = 0.55919, Kmax = 0.57290. 

Therefore, fuzzy decision trees are preferable, when there is not a dataset with the 

probability of samples, but experts can identify linguistic groups, which generalize 

biases and probability. 

 
  

Fig. 6. The membership functions approximated using the distribution of features (the histograms) 

and the frequency distribution (the green dot-lines) 

 

 

 
Table 4. Experiment results of ID3 using different training datasets 

 

a) Only unique samples b) All samples 

 B N B N 

B 0.00720 0.75063 0.04471 0.00259 

N 0.04932 0.19285 0.01181 0.94089 

A = 0.20005, K = –0.09779 A = 0.98560, K = 0.85375 
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Table 5. Experiment results of FID3 using different training datasets 

 

a) Only unique samples b) All samples 

 B N B N 

B 0.00361 0.04154 0.04314 0.00287 

N 0.05291 0.90195 0.01338 0.94061 

A = 0.90555, K = 0.02196 A = 0.98375, K = 0.83299 

 

Comparing with a random forest algorithm applied in the previous study (Kodors, 

2017), both algorithms ID3 and FID3 have smaller precision, their errors are 1.4% and 

1.6% versus 1.1% of the random forest algorithm. 

Selecting an answer, a decision tree verifies probability of each class in the node. 

Considering that, probability can be applied to filter incorrect answers; however, it 

provides the loss of data (see Fig.7). According to Fig.7, ID3 is more robust – 60% of 

buildings are classified with probability 99% unlike 40% of FID3. The parameter 

“probability” can be provided together with a shape, it will be useful to accelerate 

manual data verification using the filter of GIS. 

 

 
 

Fig. 7. Error decrease and data loss increase depending on probability of correct answer 

 

Analysing the constructed fuzzy decision tree, 15 rules with 99% probability of the 

category “Buildings” were obtained (see Table 6). All rules excluding the 9
th

 row 

contain compactness (C2) equal to value “compact”. It identifies relatively strong “linear 

dividing” of classes using this feature that correlates with the result of feature analysis in 

the previous research (Kodors, 2017). 

Looking globally into the building detection and classification problem using remote 

sensing data with the high resolution, ISPRS provides benchmark test (WEB, b) with 

spectral and DSM data, which has the ground sampling distance equal to 9 cm. The 

Vashington 2D labelling challenge provides building classification precision F1 from 

0.82 to 0.96 with mean value 0.93, where the unit of calculation is a pixel. The proposed 

method with filter 16 m
2
 (Kodors et al., 2015) had the F1 score 0.95, While the proposed 

method with improved filter by the random forest algorithm provides F1 equal to 0.985. 

However, the different resolution and landscape of ISPRS and experiment datasets must 

be considered. Therefore, the precise comparison, of course, must be completed using 

ISPRS benchmark dataset.  
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Table 6. Classification rules of buildings 

 

Rules with probability 99% 

1) Area=”small” AND R=”regular” AND C2=”compact” AND F=”long” 

2) Area=”small” AND R=”regular” AND C2=”compact” AND F=”compact” 

3) Area=”small” AND R=”rectangular” AND C2=”compact” AND C1=”elongated” 

4) Area=”small” AND R=”rectangular” AND C2=”compact” AND C1=”rectangular” 

5) Area=”middle” AND C2=”compact” AND R=”oblique” AND F=”extended” 

6) Area=”middle” AND C2=”compact” AND R=”regular” AND C1=”compact” 

7) Area=”middle” AND C2=”compact” AND R=”rectangular” AND C1=”compact” 

8) Area=”middle” AND C2=”compact” AND R=”rectangular” AND C1=”extended” 

9) Area=”middle” AND C2=”extended” AND R=”rectangular” 

10) Area=”large” AND C2=”compact” AND R=”oblique” AND C1=”extended” 

11) Area=”large” AND C2=”compact” AND R=”regular” AND C1=”compact” 

12) Area=”large” AND C2=”compact” AND R=”rectangular” AND F=”long” 

13) Area=”large” AND C2=”compact” AND R=”rectangular” AND F=”elongated” 

14) Area=”large” AND C2=”compact” AND R=”rectangular” AND F=”compact” 

15) Area=”large” AND C2=”compact” AND R=”rectangular” AND F=”square” 

 

The well-developed libraries like TensorFlow, Keras, Caffe, etc., supporting GPU 

calculations increased the number of machine learning engineers. And the 

understandable supervised solution, expected high precision, available open data, plenty 

of training courses and simple tuning model only increases the number of deep learning 

scholars. Therefore, nowadays, the deep learning is massively used for image 

classification including LiDAR data processing (Yang et al., 2017; Rizaldy et al., 2018; 

Sun et al., 2018a, 2018b). The deep learning is based on the application of the artificial 

neural networks and it is intuitive to use 2D projection of LiDAR data as input that is 

actually applied in practise. As result, the deep learning deserves attention, because the 

proposed semantic segmentation algorithm based on the energy minimization approach 

methodology processes 2D projection of LiDAR data too. 

The deep learning scholars propose next results: overall kappa = 0.89 (Sun et al., 

2018a), F1 of roofs = 0.93 and F1 of impervious surfaces = 0.90 (Yang et al., 2017), F1 

score of buildings = 0.95 (Sun et al., 2018b); that is close to the mean F1 score for ISPRS 

data (WEB, b). Therefore, it can be concluded, that the proposed method has potential, 

which is comparable to deep learning methods, but it does not require training and the 

high-performance computing as deep learning solutions. However, the deep learning is 

applicable to process orthoimages and shows good results for building detection 

providing F1 equal to 0.95 (Liu et al., 2018), that is important considering the fact, that 

airborne and satellite imaging are the more cost-effective services neither airborne laser 

scanning.  

But regardless of deep learning and proposed segmentation classification algorithm 

precisions, the ID3, FID3 and the random forests filters, which analyse the geometric 

features of shapes, can extend all classification algorithms providing different precision 

improvement for each method. Considering to this experiment, the improvement is equal 

to F1 = 0.035, that replaces the method from category “middle” (0.82 < x < 0.96) to 

“high” (x > 0.96). Of course, it must be considered, that proposed method only detects 

buildings. 
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Other application of geometric feature filters is quality control and tuning. It is time-

consuming to analyse the visual features of the correctly and incorrectly classified 

objects, but the conversion of adjectives like “compact”, “large”, “long”, etc. into digital/ 

mathematical form provides possibility to apply computers for big data analysis. 

 

Conclusions 

The analysis of common sample decrease (see Table 2) has showed, that 5 features 

{ C2, R, F, A, C1 } do not separate all samples. Considering only classification accuracy, 

the correct solution is to add features for stronger division of classes, what can be 

obtained, for example, using features of spectral images. Firstly, increase of feature 

number requires additional performance, secondly, these additional features can be 

restricted, for example, if end user has only LiDAR data, therefore the increase of 

classification accuracy using a more powerful algorithm remains important task. 

The comparison of the algorithms identifies, that the random forest algorithm 

provides better classification accuracy than ID3 and FID3. The errors among 3 

algorithms are not very different, however, the difference is palpable in the case of the 

big data. The extension with the random forest algorithm increased the precision of 

previously published method (Kodors et al., 2015) from 0.95 to 0.985 (F1 score) 

showing the high potential of method comparing with the modern solutions, which have 

the average precision equal to 0.93 (the deep learning solutions – approximately 0.95). 

Close classification results show, that intelligent system must be extended with 

additional services like land cover classification, 3D model generation etc., or 1
st
 and 2

nd
 

classification stages must be improved, that is confirmed by 254 common shapes of both 

classes, which provides constantly incorrect classification. 

However, tuning of current system is possible. Decision trees are working using 

linear separators, which are provided by bands defined by logical expressions “less than” 

and “greater than”. Fuzzy trees have overlays of membership functions, but the rule 

“event with maximal probability” identifies biases too in the intersection points between 

two events. Samples are distributed in multidimensional space and clusters can have 

custom forms. Linear separators can draw custom forms out, only if pixilation is 

sufficiently small. Therefore, the usage of PCA transformation can provide the better 

space for linear split of classes, that can improve classification accuracy and simplify 

decision tree structure; but the bi-plots – additional information about relations among 

the features. 

The significance of feature “compactness” (C2) for classification task was proved by 

the entropy and fuzzy decision tree structure analysis, that correlates with the results of 

the previous study (Kodors, 2017). 

Speaking about the type of logic, the crisp logic was more effective in the present 

case, when frequency distribution between classes is known for each sample. 

The error decrease and data loss increase depending on probability of correct answer 

identify, that data loss increase is too strong to apply this filter for automatic 

classification. However, it is useful for the semi-automatic solution, when the part of 

data is accepted without manual verification, but other data are verified considering 

decrease of building probability according to classifier. 
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