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Abstract. As a branch of network science, social network analysis widely uses graph
techniques. Only in rare cases are results obtained from the graph models validated
against “ground truth” and are directly applicable to objects in the investigated do-
main. Like extraneous solutions in mathematics, ungrounded mechanistic analogies,
incorrect interpretation of indirect ties for intransitive relations and use of the “path”
concept for social networks may lead to noninvertible results with no evidence outside
the used graph model. The author investigates unimodal networks with dyadic ties,
provides several examples of correct and incorrect applications and recovers the roots
of incorrectness.
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1 Introduction

Together with physical networks like transportation and computer-related net-
works, social networks comprising actors (humans or human-based structures
like companies, parties, and social groups) and relationships (ties, interactions)
between them are also investigated via attributed graphs. Excellent general
overview of the history of graph usage in social network analysis is given in
(Scott, 2002), while (Wasserman and Faust, 1994) contains an in-depth analysis
and description of graphs in network analysis.

In this paper, unimodal networks with dyadic ties of single type among them
will be investigated. An example of such social network is depicted in Figure 1.

We will maintain a clear line between network as a real-world phenomenon
and its model — graph. The term “graph” here is used in the narrow sense of the
word exclusively in connection with graph theory and has nothing with things
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Fig. 1. An attributed graph of a social network.

like infographics, charts, and functions. It is assumed that relationships in the
network should be verifiable without using any model including graphs.

Such a division is not obvious, since many authors use network and graph
terms interchangeably: “My apologies here for the mixed terminology: edge and
node are from graph theory; tie and actor are social network terms. You will
need to be familiar with both usages, and I will use them interchangeably”
(Robins, 2015). In others network terms are simply given as “synonyms” of
graph terms (Bothorel et al., 2015): “Actor: also called a node or a vertex”
(Denny, 2014), “... the propagation of a sexually-transmitted disease that spreads
along the edges of a graph” (Watts and Strogatz, 1998), “Most often, nodes are
individuals, such as individual persons or chimpanzees” (Borgatti et al., 2013).

Despite the fact that such interviewing justifies the naturalness of graph
concepts for network analysis, it puts the reader under the delusion that all
graph and network concepts can be used interchangeably and obtained results
applied to the initial network in a simple and straightforward way.
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We will divide the process of network analysis using graphs into three sepa-
rate steps as schematically depicted in Fig. 2:

– N — obtaining an attributed graph from the real-life network
– A — performing analysis on the graph
– C — applying analysis results and conclusions from graph back to the net-

work

Social network analysts follow this schema, usually without clearly subdivid-
ing the whole process into separate steps. If network and graph terms are used
interchangeably, this gives the illusion that step N is not necessary and step A is
(or can be) performed on the entities of the initial network. However, analysis is
always based on the graphs and so any existing approach should be easily trans-
ferable to the described three-step schema even if it seems unnecessary puristic.
In general, the same schema “create model — analyze model — apply results to
the network” can be used also if a different network model is chosen instead of
graphs.

Fig. 2. The process of network analysis using graphs: N — obtaining an attributed
graph, A — performing analysis, C — applying analysis results

In this paper, we will assume that the first two steps N and A are processed
correctly and are completed, i. e. all known information (and nothing else) from
the network is correctly transferred to the graph and all operations within the
graph are performed in strong correspondence with graph theory.

This assumption is essential, since the literature contains mentions of sev-
eral sources of incorrectness of these steps. For example, speaking about social
networking services: “Unfortunately, many members of these sites try to con-
nect with as many people as possible — whether they know them or not. This
creates many false links/connections in the LinkedIn and Facebook databases.
Two people might show to be connected, but they really are not — one person
was too embarrassed to turn down a “friend request” from a total stranger”
(Krebs, 2008). There may also be attempts to “enrich” data by adding ties
that are not observed, since “it is wiser to look for more relaxed structures”
(Bothorel et al., 2015 an introduction of quasi-cliques).

The main focus of the paper will be on the step C of applying graph results
back to the network, since “The main goal of social network analysis is detecting
and interpreting patterns of social ties among actors” (de Nooy et al., 2012).
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Attention to the correctness of this step in the literature of social network
analysis is surprisingly low. Just a few authors (Krebs, 2002, Kleinfeld, 2001)
emphasize the necessity to validate results obtained from graphs with respect
to the original network. The value of investigating network structure in isola-
tion is also disputed: “More generally, the experimental approach adopted here
suggests that empirically observed network structure can only be meaningfully
interpreted in light of the actions, strategies, and even perceptions of the indi-
viduals embedded in the network: Network structure alone is not everything”
(Dodds et al., 2003).

We can found similar critical thoughts aimed at inappropriate usage of num-
bers in general: “Numbers have become so familiar that we no more worry about
when and why we use them than we do about natural language. We have lost
the warning bells in our head that remind us that we may be using numbers
inappropriately. They have entered (and sometimes dominate) our language of
thought” (Edmonds, 2004).

In this paper, we will demonstrate that concepts of “path” as a chain of
consecutive ties and “connectivity”, which are natural for graphs and have good
analogs in substantial networks, are not always applicable to social networks,
and it is easy to get wrong conclusions based on such models.

The paper is organized as follows. Section 2 gives a short insight in graph
concepts, Section 3 describes the general process of building attributed graphs
from real-life networks. In the following Sections 4,5,6 and 7 problems with in-
direct ties and the incorrect use of several concepts in social networks due to
intransitivity of ties are discussed. Transmission of messages is analyzed in Sec-
tion 8. Several examples are analyzed thoroughly in the Section 9. Conclusions
are given in Section 10.

2 Beyond the basics of the graph theory

The author assumes that the reader is familiar with graph concepts (Diestel, 2017,
Wasserman and Faust, 1994, de Nooy et al., 2012) but would like to recapitulate
some important graph features from the viewpoint of graph theory.

Definition 1. A graph is defined by two sets: set V of objects from some
domain and set E of object pairs (v1, v2), where v1, v2 ∈ V .

Elements of V are called vertices or nodes, while elements of E are called
arcs (if the order of objects in pairs is important) or edges (if the order is not
important).

A particular graph by definition is static structure: V and E are fixed, and
“analysis of the graph” means analyzing these two sets. In particular, it follows
that graph models of dynamic networks can only be snapshots at particular
moments of time or describe an underlying static structure.

The graph itself doesn’t contain “historical” information on how sets V and E
were created and why these sets contain exactly these elements. The “meaning”
of V and E is out of scope from the viewpoint of the defined graph. Therefore,
if there is any intention to apply results obtained from the graph to the initial
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network, this meaning should be somehow kept beside the bare graph that is
sufficient for graph-based analysis. The simplest approach is to add attributes
(or properties (Needham and Hodler, 2019)) to the vertices and/or edges, like
labels are added to the vertices in the graph depicted in Fig. 3. During graph
analysis, labels or other attributes do not play any role and are used just to keep
a backward connection between graph and the initial network.

However, simple labeling may be useless (like in Figure 1) if the reader is
not familiar with the described domain and the labels are too weak for a proper
“decoding”. Let’s investigate one more example.

Fig. 3. Isomorphic graphs.

In the example depicted in Figure 3 three graphs are isomorphic, and since
only structural relations matter, properties of all three graphs are the same.
Graph (b) may be used for the analysis of graph properties, while the texts
adjacent to vertices in (a) and (c) may be used just for back-referencing to the
corresponding network. Judging from the names, some networks of cities from
the USA (a) and Europe (c) are depicted in these graphs.

Assuming that (a) and (c) depict real networks, let’s focus on them and try
to answer the following questions:

� Since names of cities are given, is it possible to determine what networks are
depicted in the corresponding graphs?

� Are relationships between cities in both networks the same?
� Are Jacksonville and Raleigh connected in the same way as their structural

analogs Oslo and Riga?

Most probably it will be impossible to give certain answers to these ques-
tions without additional information. If we add information that in the (a) the
relationship means “is connected by railroad”, it becomes possible to give par-
tial answer to the first question: “In (a) a small fragment of the USA’s railroad
network is depicted” as well as give negative answers to the last two questions
since Riga and Oslo are not connected by railroad and therefore the relationship
in (c) obviously differs from that in (a).

However, this knowledge gives nothing to recover the relationships in (c),
while structural symmetry still encourages to draw parallels with (a). We will
return to this example in Section 5.



276 Opmanis

So the overall conclusion is straightforward: the graph alone cannot be used
to judge about the initial network if we do not know network details — what
objects and relationships are depicted.

3 From network to graph

Let’s investigate a simple example of how a graph can be obtained from a par-
ticular network. Let’s try to describe a set of movies, assuming that each movie
consists of several episodes and each actor of a particular movie performs in
at least one episode. Our goal will be the investigation of collaborative work of
movie actors and we will be interested in relationships of the form “Actors X
and Y performed together in the same episode”. What is the most appropriate
way to build the corresponding graph?

The usual way is to define a single vertex for each actor and provide an
edge for each appearance in an episode together. If information about all movies
is collected together, discarding information on which movie each collaboration
took place in, we can get a graph like in Fig. 4 (a), where appearing in the
same episode in some movie for six actors A, B, C, D, E and F is shown. An
edge between any pair of vertices denotes that corresponding actors performed
together at least in one episode of at least one movie.

However, if we use multi-layer graphs (Kim and Lee, 2015) and focus on sep-
arate movies, we can create a separate graph (or graph “on a separate sheet”)
for each movie, like in Fig. 4 (b). Movie M1 featured actors A, B, C, E and F,
while M2 featured B, C, D, E and F. As a result, there can be several vertices
representing the same person in different movies.

Fig. 4. Graphs obtained from the same network: (a) a simple graph neglecting partic-
ular movie information, (b) a multi-layer graph with a separate graph for each movie.
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It should be pointed out that facts obtained from the network and depicted
are the same for both graphs. From the viewpoint of graph theory, both obtained
graphs are correct (all actors are depicted as vertices and all appearances in the
same episode are depicted as edges). Due to its simplicity, the “all-in-one” way of
modeling is preferred by network analysts and other possible approaches are not
investigated. However, conclusions obtained from the graphs can substantially
differ depending on the chosen approach. In our example, the question “Have the
actors X and Y ever performed in the same episode?” can be answered from both
versions while “Have the actors X and Y ever performed in the same movie?”
cannot be answered from 4 (a) if there is no edge between the corresponding ver-
tices. In particular, the answer is “yes” for D and E but “no” for their structural
analogs D and A.

The choice of graph model highly depends on the research purpose. For ex-
ample, if the intention is to investigate pairwise collaboration for a particular
actor, an expressive characteristic of each vertex (ego) is obtained by investigat-
ing its induced 1-step subgraph (referred to as egonet) (Akoglu et al., 2010). In
the given example, the egonet with ego B can better be explored directly in the
“all (collaborations) in one” graph (Fig. 4 (a)). To obtain the number of different
partners B had in any episode, we need only calculate the degree of vertex B
(2). Collection of the same information from the multi-layer graph needs some
preprocessing, e. g. creation of a virtual vertex B′ where all appearances of B
are collected together.

4 Direct and indirect ties

For direct ties, there is a straightforward bidirectional correspondence between
graph objects and real-life artifacts.

If there are three pairs of mutual friends A and B, B and C, C and D, then
this can be depicted as a simple graph (see Fig. 5):

Fig. 5. A graph of three friendships.

If two persons are friends, then there will be an edge between the correspond-
ing vertices, and there will be no edge if they are not. To discover whether two
persons are friends, we look at the corresponding attributed graph of friendships,
find the vertices marked by the persons’ names and check whether there is an
edge between them. As long as only direct ties are investigated, we can be sure
that the graph corresponds to the real life. When building the graph, the rela-
tion “friendship” is assumed to be static: for a particular pair of persons it either
takes place or not. It should be possible to verify this relationship without the
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graph: if all involved persons X are asked “Is Y your friend?”, their “yes/no”
answers should match the previously gathered information.

But what can we say about indirect relationships between pairs of persons
not tied directly, like A and D? Certainly, they are not friends (there is no edge
between the corresponding vertices). Are they acquainted? Maybe yes (but then
they are not friends) and maybe not — the relationship “is aquainted with”
was not described in the initial set of facts for persons who are not friends and
therefore is not presented in the graph regardless of how it is constructed. As a
consequence, it is not possible to decide which answer is right without additional
information about relationships besides friendship in the observed network.

The network of friends is a popular standard example, and several authors
speak about “transitivity of friendship” in terms such as “it is a tendency for
friends of friends to be friends” (Denny, 2014) or “the enemy of my enemy is
my friend” (Borgatti et al., 2013 p.22). In real examples, “a friend of a friend is
a friend” may be true “with high probability” (Hoff et al., 2002) but far from
always.

The author himself is involved in friendly relationships with several people
while direct relationships among these people are close to “being enemies” ex-
cluding any “friendliness”.

In general, any assertion about relationships between persons not tied di-
rectly (such as A and D in Fig. 5) is just an assumption that cannot be justified
from the given data.

5 Path concept

Let’s continue with a few more concepts from the graph theory.
Definition 2. A path connecting two vertices u and v is an edge between

them or a chain of consecutive edges via other vertices starting in u and ending
in v.

The path is a natural concept for graphs. “Finding shortest paths is probably
the most frequent task performed with graph algorithms and is a precursor
for several different types of analysis” (Needham and Hodler, 2019). Due to the
graph abstraction, it is always possible to perform an arbitrary number of simple
steps from a vertex to a neighbor vertex via edge. We also can count the steps
performed.

Definition 3. The length of a path is the number of edges in this path.
Also, we can introduce the term “connectivity”.
Definition 4. Two vertices are connected if there exists a path between

them.
Definition 5. The distance between two vertices is the length of the shortest

path connecting these vertices or ∞ if the vertices are not connected.
Definition 6. A connected component is such a subset of vertices in an

undirected graph that there is a path between any two vertices in this subset.
There is no vertex outside this subset that has an edge to any vertex within the
subset. An isolated vertex is also a connected component.
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Definition 7. A clique is a subset of vertices in an undirected graph such
that there is an edge between every two distinct vertices in this subset. There is
no vertex outside this subset that has edges to all the vertices within the subset.
An isolated vertex is also a clique.

Cliques together with n-chains (i. e. paths of length n) are introduced in the
paper investigating group structures in social networks (Luce and Perry, 1949).

Connectivity in graphs as well as the use of terms “walk”, “trail”, “path”
(Bondy and Murty, 1976 p.12) is so intrinsic that social network analysts neglect
the necessity to define the corresponding constructs in the investigated domain
and take for granted their meaningful existence. In (Peay, 1980), the necessity
to choose the right approach to characterize connectedness for indirect ties is
discussed, but still without questioning the correctness of the concept in general.

6 Relationships in a graph-based social network analysis
model

Let us divide the class of all graphs into two disjoint classes: graphs where each
connected component is a clique (SC) and all other graphs (SN ). Representatives
of these classes are depicted in Fig. 6.

A typical social network model is a graph where it is possible to find a
connected component that is not a clique and therefore belongs to SN .

Fig. 6. Representatives of SC (A, B) and SN (C, D).

Non-completeness of at least one component is based on the observation that
in real networks perfect structures are rare: “However, large cliques are difficult
to find in real data because it is sufficient for one edge not to be present to
break the clique, and in social graphs edges can be missing for many reasons,
e. g., because of unreported data or just because even in a tight group there
can be two individuals that do not get well together” (Bothorel et al., 2015).
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Similarly, “Those nodes whose neighbors are very well connected (near-cliques)
or not connected (stars) turn out to be “strange”: in most social networks,
friends of friends are often friends, but either extreme (clique/star) is suspicious”
(Akoglu et al., 2010). And, “Obviously, social networks are neither complete not
one-dimensional” (Fibich, 2017).

If there are separate connected components, they could be investigated sep-
arately (Banerjee et al., 2014). In case of a few outliers, attention is focused
on the main group, excluding outliers from further analysis. Also, the oppo-
site is possible, when researchers specifically look for anomalies in the graphs
(Akoglu et al., 2015).

Definition 8. A binary relation R over a set of objects O is transitive if for
any three objects o1, o2, o3 ∈ O, o1Ro2 and o2Ro3 imply o1Ro3.

We demonstrated intransitivity of the friendship relation using an example
in Section 4, but let us prove several propositions for two relations: E = “there
exists an edge between two vertices” and P = “there exists a path between two
vertices” for graphs from SC and SN .

Proposition 1. Relation E over the set of all vertices of g ∈ SC is transi-
tive.

Proof. Since g ∈ SC , all connected components c ⊆ g are cliques, so for any
vi ∈ c, viEvj and vjEvk imply that also vj , vk ∈ c. Each vertex in a clique is
connected with all other vertices in the clique. Therefore the transitivity require-
ment is fulfilled: viEvj and vjEvk imply viEvk. ut

Proposition 2. Relation E over the set of all vertices of g ∈ SN is not
transitive.

Proof. Since g ∈ SN , there exists a connected component c ⊆ g that is not
a clique. There exist two vertices vx ∈ c and vy ∈ c that are not connected by
an edge. Since c is connected, there exists a shortest path connecting vx and vy:
vxEv1, v1Ev2, . . . , vnEvy with n ≥ 1 intermediate vertices v1, v2, . . . , vn ∈ c. Let
us look at any three consecutive vertices vi, vj and vk on the path vxv1v2 . . . vnvy.
There is no edge between vi and vk — otherwise there exists a shorter path
directly connecting vi and vk and not containing vj . Since the given path is
the shortest, this is impossible and we have found three vertices breaking the
transitivity requirement: viEvj and vjEvk do not imply viEvk. ut

Proposition 3. Relation P over the set of all vertices of g ∈ SN is transi-
tive.

Proof. By definition there are no vertices from distinct connected compo-
nents having relation P . For any two vertices vx and vy from the same con-
nected component, we have vxPvy. Therefore any three vertices vx, vy, vz such
that vxPvy and vyPvz belong to the same connected component and satisfy the
transitivity requirement, as there is a path from vx to vz: vxPvz. ut

Proposition 4. Relation P over the set of all vertices of g ∈ SC is transi-
tive.

Proof. The same as for Proposition 3.
These propositions show that in the case of SN there is an important dis-

tinction between direct and indirect ties (or paths of length 1 and more than
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1): direct ties cannot be simply considered a special case of longer paths,
and paths do not automatically have the same features as direct ties. Features
of indirect ties in the social network should be defined separately and they can
not be simply deduced from the direct ones.

Now we return to the example depicted in Figure 3 (c) and reveal the secret
that ties in this network are defined as “there exists a railroad connection between
the cities or there is the same number of letters in the names of the cities
written in English”. The provided graph is formally correct but of low value for
investigating indirect ties in the initial network of cities. It is not obvious that
there is any valuable relationship between any pair of unconnected cities. Until
such a relationship is defined (analogous to P in the theoretical model), it makes
no sense to talk about anything based on the path concept.

Only when paths have a meaningful explanation, is it worth to calculate dis-
tances between vertices, seek shortest paths between pairs of vertices or calculate
an overwhelming number of different graph metrics to analyze graph properties.

7 Roots of incorrect application of graphs

Questions about the correctness of representation almost never arise in physical
networks: if roads are modeled, then it is possible to walk, run or drive on several
roads in a row; and electric current can flow through several consecutive wires
without a doubt. However, we can clearly see a difference between static structure
(roads or wires) and dynamic processes that use this structure (someone walking
or electric current flowing).

A usual way to explain social networks is to provide an analogy with the
static structure of some physical network and further exploit the analogy of
dynamics on an intuitive basis. Road or pipeline networks as well as electric
circuits (Bozzo and Franceschet, 2013) are a few such analogs.

Borgatti et.al. in (Borgatti et al., 2013 p.3) discusses “interactions” forming
“flows”: “Flows may be intangibles, such as beliefs, attitudes, norms, and so
on, that are passed from person to person. They can also consist of physical
resources such as money or goods.” Or, “Perhaps foremost among these is the
idea that things often travel across the edges of a graph, moving from vertex
to vertex in sequence — this could be a passenger taking a sequence of airline
flights, a piece of information being passed from person to person in a social
network, or a computer user or piece of software visiting a sequence of Web pages
by following links” (Easley and Kleinberg, 2010). “Information flows” are also
mentioned in (Krebs, 2008): “Employees who are included in key information
flows and communities of knowledge are more dedicated and have a much higher
rate of retention.” In (Borgatti, 2005), “attitude influencing” and “emotional
support” are mixed together with “e-mail broadcast” and “mitotic reproduction”.

The semantics of the terms “walk”, “trail”, “path” assumes dynamics — that
there is a possibility to “walk”, “move” or “carry something” along a path. The
term “flow” is also used with graphs (e. g. “maximum flow”), thereby assuming
that there is something able to “flow”, even if only as a quantitative abstraction.
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Modeling networks by graphs implies a “possibility to travel” without limit via
edges or chains of consecutive edges regardless number of already passed edges.

As in the foundational paper of graph theory, Euler’s Bridges of Königsberg,
we assume that a real person can cover distance necessary to cross all the bridges.

Topological distance metrics that are used for exploring social networks (like
diameter, betweenness centrality, closeness centrality and eigenvector centrality)
are based on the concept “path in a graph” (Hernández and Mieghem, 2011).

Physical networks may easy “blindfold” social network analysts if they hastily
assume that social ties have the same characteristics as tangible ties in physical
networks. The author insists that it makes a substantial difference whether in
the original network there is a natural flow of things or a way to walk (money
transfer, selling of goods, traveling of a particular person, surfing via links from
one web page to the next) or the network is formed from static direct ties (friend-
ship, having the same beliefs, conversations, asking for advice, e-mail commu-
nication, collaborative work) and there is no tangible and stable indirect flow
between connected actors.

Although dynamic processes are justified for the physical networks (e. g.
electric current can pass through several wires if they are connected), there are
no general analogs for social networks!

Particularly interesting and confusing is the usage of the analogy of electric
current when social ties “name of a person X is mentioned together with a name
of a person Y on the same web page within a window of approximately ten words
of one another” are investigated (Faloutsos et al., 2004). It is declared that there
is some “current” from Alan Turing to Sharon Stone: “We note also that Alan
Turing has direct connections to Alan Thicke, Alan Alda, and Bruce Lee (all of
whom have direct connections to Sharon Stone), but these edges were discarded
as carrying too little current.” (emphasis mine). Of course, no evidence is
given that there exists anything that can be regarded as current relevant to the
real network and real people!

Since the 1950s, the term “social distance” (or “distance between individu-
als”) has been used to describe a concept similar to “distance” in the correspond-
ing graph (Bavelas, 1950, Scott, 2002 p.76, Kilduff and Krackhardt, 2008 p.69).
This concept is explicitly based on the paths in a graph. It must be pointed out
that back in 1967 S. Milgram already noticed a difference between “distance”
in the real world and in a graph: “Almost anyone in the United States is but a
few removes from the President, or from Nelson Rockefeller, but this is true only
in terms of a particular mathematical viewpoint and does not, in any practical
sense, integrate our lives with that of Nelson Rockefeller” (Milgram, 1967). Sim-
ilar thoughts (with regard to graph diameter) can be found in (Denny, 2014):
“A very large diameter means that even though there is theoretically a way
for ties to connect any two actors through a series of intermediaries, there is
no guarantee that they actually will be connected.” (emphasis mine). Or in
(Kleinfeld, 2001): “What does it actually mean in practical terms to be linked
to others on a first-name basis? A welfare mother in New York might be con-
nected to the president of the United States by a chain of fewer than six degrees:
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Her caseworker might be on first-name terms with her department head who may
know the mayor of Chicago who may know the president of the United States.
But does this mean anything from the perspective of the welfare mother?” So
there is no proof that there exist, and are usable, “paths” in the particular real
networks!

8 Transmitting messages over networks

For some mental exercise, let us consider the relation “sends messages to” as
described in (Luce and Perry, 1949) for two networks: a computer-based network
with cables and communication devices like routers and switches and a human-
based network that describes people with whom each person communicates, i. e.
each person is able to send any message to any person from some list. Military
structures transmitting orders are closer in this sense to the physical network
since people are obliged to process information uniformly.

Despite the view “In the efficiency view of networks, the network simply op-
erates as a passive conduit of information” (Carpenter et al., 2004), in a human-
based network, there is no evidence that the initial message will be always passed
in its original form through a long chain of actors. Of course, it can be done in an
artificial environment, like in the movie “Six Degrees of Celebration” a concrete
message from a particular child was carried to the president of Russia via social
ties (Bekmambetov et al., 2010). Most probably we will get a “Chinese whis-
pers” (Blackmore and Dawkins, 2000) game situation where the initial message
will be lost in the chain of transmitting people. Even assuming that people are
honest and willing to pass a correct piece of information, details are usually lost,
added or transformed, making it almost impossible to recover in full detail the
initial content of the message. Transmission of information is much more com-
plicated, and several publications describe similarities in the spreading of epi-
demic diseases and of information (Goffman and Newill, 1967, Goffman, 1971).
As pointed out in (Funk et al., 2009): “first-hand information about a disease
case will lead to a much more determined reaction than information that has
passed through many people before arriving at a given individual.”

We can observe several factors that prevent messages from being carried over
the network through a long chain of actors.

First, a message can survive only a limited number of transmissions: “. . . a
new piece of information may only be “news” for a limited time. After while bore-
dom sets in or some other news arrive and the topic of conversation changes”
(Banerjee et al., 2014). In (Kadushin, 2012 p.206), a distance of three is men-
tioned as crucial: “Empirically, the influence of other persons or units on the
focal person vastly declines somewhere between two and three steps out. It is
not clear theoretically why this is true.”

Second, there is a class of networks where it is impossible to reach a previously
unknown addressee: “In a class of networks generated according to the model of
Watts and Strogatz, we prove that there is no decentralized algorithm capable
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of constructing paths of small expected length relative to the diameter of the
underlying network)” (Kleinberg, 2000).

And, third, important factors determining whether a message will be carried
may be hidden: “This may be because they are incorporating other informa-
tion, such as who is trustworthy or who is most charismatic or talkative, which
may not be picked up in the pure network data” (Banerjee et al., 2014). And,
“This may seem counter-intuitive at first, but in fact, it formalizes a notion
raised initially — in addition to having short paths, a network should contain
latent structural cues that can be used to guide a message towards a target”
(Kleinberg, 2000). In addition, information can be carried in disagreement with
the physical laws in their mechanic analogs and alternative measures like flow
betweenness (Newman, 2005) are invented.

The author has been able to find similar doubts in a few papers describ-
ing real experiments with the use of social ties (Travers and Milgram, 1969,
Milgram, 1967). These tests have shown that there is an extremally high dropout
rate: the number of completed chains is almost always under 30% (from 5% to
27.5%). Judith S. Kleinfeld found evidence that in S. Milgram’s own other exper-
iments the number of completed chains was even lower and this number highly
depends on such real-life attributes as race and social class (Kleinfeld, 2002). In
another later experiment (Dodds et al., 2003) number of completed chains was
only 384 out of 24163 (1.59%). In the excellent overview of empirical small-world
studies S.Schnettler shows that there are known just 11 serious real experiments
from 1969 till 2003 all with very high drop-out rate (Schnettler, 2009).

An excellent conclusion is given in (Newman, 2005): “And even in a case
such as the famous small-world experiment of Milgram (Milgram, 1967) and
Travers and Milgram (Travers and Milgram, 1969), or its modern-day equiva-
lent (Dodds et al., 2003), in which participants are explicitly instructed to get
a message to a target by the most direct route possible, there is no evidence
that people are especially successful in this task (emphasis mine).”

9 Examples

In this section, the author will provide several examples of graphs and possible
conclusions obtained from them. It is easy to find examples where there is a
natural and quite obvious meaning for indirect ties: the graph of citations (where
vertices represent scientific publications, arcs show the relation “is cited in”, and
paths mean “is influenced by”), the World Wide Web (where vertices represent
pages or separate resources, arcs show the relation “is linked to”, and paths
mean “is reachable from”) are several examples of such networks with directed
relationships. It should be pointed out that, while these networks represent social
phenomena, they still are quite tangible.

9.1 Geospatial Network Model of the Roman World

An excellent representative of a correct model is ORBIS, The Stanford Geospa-
tial Network Model of the Roman World (Scheidel et al., 2014), where the road
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map of the Roman Empire can be investigated looking for shortest, fastest or
cheapest routes. Various interesting results can be obtained through calculation
and simulation. Since the modeled network is a physical network of roads, it
is not surprising that it fits well in the world of graphs and there is a quite
obvious one-to-one correspondence between network and graph constructs, and
there is no doubt that calculations performed on the graph are compatible with
the original network.

9.2 Consanguinity

Fig. 7. A graph of a consanguinity network.

The next example is a graph of consanguinity where the depicted network
consists of people tied with an “is a child of” relationship. Consanguinity is
defined as “being related to someone by birth” or “having a common ancestor”.
An example of such a graph is given in Figure 7, where females are marked
by rings, males by triangles and parents are placed above children. Usually,
consanguinity relations are investigated from a particular person’s perspective
and it is possible to determine the degree of kinship as the length of a path that
first goes upwards (from child to parent) and then goes downwards (from parent
to child). Either of these parts may be absent, but they cannot be interchanged.
With this restriction in place, the distance (or degree) between people in this
graph is measured in a way which completely corresponds to Definition 5. For
example, from A’s perspective, degree 1 corresponds to the parents G and H,
degree 2 to the grandparents K, L, M and N and siblings B and C, degree 3 to
the uncle I, and degree 4 to the cousins D, E and F.

It should be pointed out that if we were to calculate the length of an arbitrary
path without the above restriction, we could conclude that two people (e. g. K
and P) are connected in a way that may be completely wrong in terms of the
original network if there is no common ancestor.

9.3 Movie actor collaboration
A popular example used in social network analysis is a movie actor collab-
oration network built using data from the Internet Movie Database (IMDb)
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(Needham., 1998, Borenstein, 2016). This undirected graph is built by modeling
actors as vertices and connecting them with an edge if the corresponding ac-
tors have performed in the same movie. The famous parlor game “Six Degrees
of Kevin Bacon” (Fass et al., 1996, Collins and Chow, 1998) is based on these
data.

The famous actor Sir Thomas Sean Connery performed in 1957 in the movie
“Hell Drivers” together with Wilfrid Lawson and in 1999 in the movie “Entrap-
ment” together with Catherine Zeta-Jones (Connery, 2016). The corresponding
attributed graph is depicted in Fig. 8 a). Since W. Lawson and C. Zeta-Jones
have never performed in the same movie, the “distance” between W. Lawson
and C. Zeta-Jones according to the graph is 2.

Fig. 8. Actor collaboration.

Traditionally, a finite distance (as opposed to infinite) is the sign that the
particular objects are connected. However, W. Lawson passed away three years
before C. Zeta-Jones was born (1966 and 1969 respectively), so there was no
possibility in any tangible sense for C. Zeta-Jones to connect with and influence
the non-existing W. Lawson.

Moreover, no existence or content of a possible “flow” between indirectly
“connected” actors has been proven even for people who are alive.

9.4 Collaboration network and Erdős numbers

Another popular example is the network of joint publications (Borenstein, 2016).
Each collaboration between a particular publication’s coauthors, which consti-
tute the basis of the built network, is correct: each vertex corresponds to a
particular author, an edge between two vertices denotes a mutual publication
and, most probably, also real collaborative work. A special case of the collabo-
ration network is an attributed graph where “distance” from the famous math-
ematician Paul Erdős (1913–1996) is investigated (Easley and Kleinberg, 2010,
Grossman, 2015). “Most mathematicians turn out to have rather small Erdős
numbers, being typically two to five steps from Erdős. (...) The very existence
of the Erdős number demonstrates that the scientific community forms a highly
interconnected network in which all scientists are linked to each other through
the papers they have written.” (Barabasi and Frangos, 2014) The network is also
mentioned in (Watts and Strogatz, 1998, Pelikán, 1996). The American Mathe-
matical Society offers a free online tool to determine the Erdős number of any
particular author (AMS, 2018).

Several sources give the impression that a smaller Erdős number is somehow
related to a higher scientific value of a particular author. However, what exactly
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Fig. 9. Decreasing the Erdős number of X without direct involvement of X. a) initial
state, b) new Y − Z publication, c) updated state

is the meaning of “are linked through papers” for distances greater than 1, i. e.
for persons who are not coauthors? Does having a lower Erdős number mean
producing high-quality publications “by default”; is it enough to announce the
Erdős number as proof of quality to make the author pass reviewing procedures
and get published? Not at all. At least the author’s personal experience shows
that the same Erdős number may have authors with uncomparable scientific
capacity.

An interesting justification that the Erdős number cannot be a stable measure
of the “quality” of a particular scientist is the following (Ručevskis et al., 2016).
It is possible to decrease the Erdős number of a particular author X without
involvement of X: it is enough if some author Y on “X’s social path to Erdős”
publishes a paper with X’s coauthor Z and as a consequence decreases also the
Erdős number of X (see Fig. 9).

This is an essential difference from the consanguinity network described be-
fore, where relationships in the network are defined by birth and new relation-
ships cannot be added without adding new actors.

If Erdős numbers cannot be considered an accurate measure of scientific
quality, then is there any meaning to these numbers at all?

There may be the attempt to decide disciplinarity of publications from the
collaboration network (Fortunato, 2010). If there are three authors being pair-
wise co-authors of some publication, then it can be decided that all authors are
interested in the same subject. However, it is not always a case – as an coun-
terexample, the author can name himself and two persons (Kārlis Čerāns and
Juris Vı̄ksna) having three pairwise connected publications (Viksna et al., 2007,
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Opmanis and Čerāns, 2010, Čerāns and Vı̄ksna, 1996) with content not related
to the scientific interests of the third.

9.5 Paths to Putin
An excellent example of a network investigation that has almost all the danger-
ous features mentioned above is “Paths to Putin” by Valdis Krebs (Krebs, 2019).
Using public data from journalists and court documents, a graph of more than
600 people and organizations is created and analyzed. Ties reflect business, polit-
ical and/or personal contacts. It is declared that the gathered data demonstrates
the existence of a covert relationship between the presidents of Russia and the
USA, Vladimir Putin and Donald Trump.

The author would like to argue against some assertions made in this investi-
gation.

� Citation: “When two individuals are trying to keep their relationships covert,
they will never establish a direct tie between themselves.” The paper uses the
converse of this: since there were no verified meetings between Trump and
Putin before the inauguration of Trump but there were meetings of people
close to the presidents (so-called associates), this is treated as a sign of a
covert relationship between the presidents. However, similar characteristics
can be found in networks of representatives who are in a state of war: heads
of countries have no direct contacts, while diplomats are usually constantly
looking for chances to negotiate, and it is possible to find a shorter or longer
chain of relationships going from one leader to another without any inten-
tion to have covert end-to-end communication. The individual relationships
among associates may be caused by presidential orders, or even be a personal
initiative using the president’s name behind his back.

� Citation: “They will use trusted intermediaries to convey information/agreements
or to pass money/resources between their two groups.” Is there any proof that
anything is passed via a chain of intermediaries from one president to the
other? Most probably this is just an assumption based on another aforemen-
tioned fallacy: mixing up a verifiable resource (money) with an intangible
one (information).

� Citation: “By running a simple network measure that looks at links within
and between large groups, we found that both the Trump associates and
Putin associates were linked mostly within their own group, but they had
a significant number of ties to the other group! This implies that the ties
between the two groups were probably not accidental, nor random.” It should
be pointed out that “network measure” here means “graph measure”, and
as long as there is no proven meaning to indirect ties, any attempt to claim
that there is an obvious purpose or that the particular direct relationships
are parts of one big plan and individuals work as a coordinated group in the
original network is ungrounded.

� All conclusions are based on the “path” concept described earlier. Paths in
the graph smoothly became “indirect paths from Trump to Putin or vice
versa”.
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� Citation (emphasis mine): “Of course all of these paths are not used to
communicate/conspire between the two sides, but it does give us an indicator
what is possible.” and “Of the 500+ possible paths between Trump and
Putin, less than 20% were probably utilized, or attempted — and of those,
less than 5% were likely to be relied upon.” But is there any single real path
for which this is demonstrably not just an assumption?

� Citation: “These 18 individuals are key in the network because they are on
many paths of information flow — they know what flows.” Of course they
know, but is there any evidence that the origin of some bit of information
that passes via an intermediate is one of the presidents and the other is its
target?

10 Conclusions

Graphs are a powerful tool for the analysis of networks, and authors should
themselves provide a critical evaluation of their choice of graphs as the model
for a social network. However, usually such analysis is not provided or is based
on wrong assumptions.

Usage of graphs cannot be admitted as correct if:

� Direct ties represent separate static facts, but reasoning assumes some un-
observed dynamics.

� Analogy of intangible social ties with physical networks is declared without
adequate explanation.

� A path concept is used for intransitive relationships, and graph metrics based
on indirect ties are reflected back onto the original domain.

� There is no reasonable way to explain the internal meaning of numerical
values and the phenomena observed in the graph in terms of the original
network without circling back to graph concepts.

Any of the mentioned aspects should be a serious warning sign in the process
of social network analysis and ask for careful revision of the used graph model.

Assumptions that social networks with intransitive relationships can be mod-
eled in the same way as physical networks, along with graph metrics based on
the concepts of path and connectivity via indirect ties, are the root causes of the
observed problems.

If it is intended to go beyond ego and use graph metrics based on paths
in graphs, it is crucial to verify the possibility to interpret indirect ties in the
observed network and prove their transitivity.

Without any such proof, graph metrics based on path concept should not be
used and conclusions based on indirect ties should not be made.

With the rise of machine learning, more and more effort should be put on
validating the obtained results against the network. Routine translation of results
back to the real life and basing other decisions on them without reasonable
criticism is unacceptable.
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