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Abstract: This paper aims to combine output from various machine translation (MT) systems so 

that the overall translation quality of the source text would increase. Applicability of the developed 

methods for small, morphologically rich and under-resourced languages is evaluated, especially 

Latvian and Estonian. Existing methods have been analysed, and several combinations of methods 

have been proposed. The proposed methods have been implemented and evaluated using automatic 

and human evaluation. During this research novel methods have been created that structure source 

language sentences into linguistically motivated fragments and combine them using a character 

level neural language model; combine neural machine translation output by employing source-

translation attention alignments; use a multi-pass approach to produce additional incrementally 

improving training data. The key results of this research are new state-of-the-art machine 

translation systems for English ↔ Estonian; approaches for utilising neural MT generated 

attention alignments for MT combination and comprehension of resulting translations; MT 

combination systems for combining output from English → Latvian statistical MT. A practical 

application of the methods is implemented and described. 

Keywords: Machine Translation, Hybrid Machine Translation, Machine Translation System 

Combination, Multi-System Machine Translation 

1. Introduction 

Today most commercial MT systems are built using a variety of statistical approaches 

and the most recent - neural network-based neural MT (NMT) approaches. Currently 

MT has not yet reached a level of quality where it can entirely replace a human 

translator, and it probably will not reach this level in any near future. However, MT has 

become highly useful in scenarios such as providing an initial translation for post-editing 

or extracting information from texts in foreign languages. In the digital age of our 

multicultural world, the demand for faster and cheaper translation has breed many 

commercial products (e.g. IBM WebSphere Translation Server, Systran, SDL BeGlobal) 

and multiple translation services are freely available on the web or as mobile 

applications (e.g. Google Translate
1

, Bing Translator
2

, Yandex.Translate
3

, Baidu 

                                                 
1
 https://translate.google.com  

2
 https://www.bing.com/translator  

3
 https://translate.yandex.com  

https://translate.google.com/
https://www.bing.com/translator
https://translate.yandex.com/
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Translate

4
, Tilde Translator

5
), demonstrating high translation quality for a wide variety 

of languages.  

A lot of current research focuses on MT for the widely-used languages, like English, 

Chinese, Spanish, Portuguese, French, Arabic, Japanese and Russian, as well as 

languages that appear in competition shared tasks, like Czech, Finnish and Turkish. 

Much less work is being done in the area of hybrid methods, for instance, combining 

multiple different paradigms to utilise their strengths and cover weaker points. Smaller 

languages like the Baltic three - Estonian, Latvian and Lithuanian are far less resourced 

in available MT services, or even language technologies in general. The existing services 

and technologies for these languages lack sophistication due to little available linguistic 

resources and technological approaches that enable development of cost-effective MT. 

This has caused a technological gap to emerge between the two groups of languages.  

Some systems like Google Translate, Bing Translator, Yandex Translator and Baidu 

Translate are freely available as online services and broaden the set of inter-translatable 

language pairs, even incorporating the languages of the Baltic countries as well as many 

other less resourced languages. Typically, these online translation services are employed 

to translate short texts by occasional users. Another common use-case is the translation 

of websites and, most recently, social media posts. 

1.1. Motivation of the research 

Rule-based, statistical and neural MT methods all have both stronger points as well as 

some noticeable weaknesses. Rule-based MT (RBMT) systems can achieve a high-

quality translation if they have a full set of the knowledge necessary. RBMT typically 

handles specific language phenomena like word agreements, inflections, long distance 

reordering, and long-distance dependency, etc. better and output of RBMT systems is 

predictable and consistent, making it easy to locate and correct translation errors. 

Unfortunately, real-world human languages are complex with many ambiguities and 

exceptions, as well as always changing as time moves forward. Advancing RBMT is too 

complicated and labour-intensive due to linguistic expertise and domain knowledge 

needed to create RBMT systems where the knowledge for one language pair in one 

domain typically is not reusable in another language pair or domain. 

In contrast, SMT systems do not need manually written knowledge sets like 

dictionaries and rules - they usually consist of subcomponents that are trained and 

optimized for usage separately, but with the same sets of data. Knowledge is 

automatically learned by training statistical models on large datasets, which makes 

improving and adapting systems to new language pairs more flexible. SMT is more 

challenging for highly inflectional languages that have too many word forms, cases, etc. 

for all possible word form and sentence construction variants to appear in training data. 

Therefore, SMT still struggles with word agreements, inflections, long distance 

reordering, and long-distance dependencies. A large, high-quality parallel corpus is 

essential for corpus-based MT, but it is often unavailable for small and less popular 

languages. 

                                                 
4
 http://translate.baidu.com  

5
 https://translate.tilde.com  

http://translate.baidu.com/
https://translate.tilde.com/
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Similar to SMT, NMT is also trained on a large amount of parallel data. It is 

computationally expensive for both training the models and using them to translate texts. 

Another big difference is that neural systems are usually trained end-to-end without any 

subcomponents. Some drawbacks of NMT include struggles in rare word translation and 

sometimes even a complete failure to translate all given source sentence words. In 

addition, since some NMT systems do translation in the character level and not the word 

level, they have a tendency to make up new words that may almost look real but in fact, 

do not exist. However, the advantages definitely are in generalization and handling 

inflections. 

Given that all of the MT methods have their advantages and drawbacks, it is 

reasonable to try to combine results from different MT systems to fix the mistranslations 

produced by one system with the help of the other systems. In addition, given that the 

Latvian language is spoken only by 1.95 million people, has a complicated grammar, 

rich morphology and limited amount of qualitative data, purely data-driven methods may 

not be sufficient. Combining results from several approaches has the potential to produce 

a better final result. 

1.2. Aim of the research 

The focus of this research is the problem of combining output from multiple different 

machine translation systems to acquire one superior final translation. This is an area that, 

when perfected, can achieve ever better results with every other single MT method (used 

here as a component) that improves upon itself. This paper describes problematic areas 

related to machine translation, limitations of current MT methods and provides 

suggestions on how to combine translations to achieve better overall quality of MT.  

The primary goal is to assemble a set of methods that would be able to improve the 

quality of MT output for the languages of the Baltic countries that are small, have a rich 

morphology and little resources available. These characteristics currently make them 

rather difficult to translate with the tools that are currently available.  

The research primarily focuses on solving MT problems that are related to translating 

from and into Latvian. Nevertheless, the aim is to find such methods that may be applied 

to other languages as well. 

For this research, the author has suggested the following hypothesis:  

Combining output from multiple different MT systems makes it possible to produce 

higher quality translations for the languages of the Baltic countries than the output that is 

produced by each component system individually.  

The goal of this research is to create a method for combining output from multiple 

MT systems that provides a higher overall translation quality. This goal encompasses all 

of the following major aspects:  

 An analysis of RBMT, SMT and NMT methods as well as existing HMT and 

multi-system MT (MSMT) methods;  

 Experiments with different methods for combining translations;  

 MT quality evaluation;  

 Applicability of methods for Estonian, Latvian, Lithuanian, and other less 

resourced languages;  

 Practical applications of combining MT.  
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1.3. Outline of the Paper 

The rest of this paper is structured as follows:  

 Chapter 2 summarizes existing machine translation methods and outlines advantages 

and disadvantages for each approach, especially detailing related work in the area of 

hybrid MT and existing combinations MT approaches. 

 Chapter 3 introduces methods for combining translations from multiple statistical 

MT engines. It is based on research conducted before the high rise in popularity of 

neural approaches. For each method, an overview and relevance to the aims of this 

research is given, followed by a description of evaluation methods used, as well as a 

detailed description of the experiments made.  

 Chapter 0 gives an insight into combining translations from neural MT engines. The 

research described in this chapter was conducted in the transition period between 

statistical and neural approaches, which called for different methods to be explored. 

The structure is similar to the previous chapter. 

 Chapter 5 introduces several practical implementations that incorporate the 

previously mentioned translation combination methods for both – statistical and 

neural approaches. 

 Chapter 6 sums up conclusions of this research. 

2. Background and related work 

Since the very first appearances of MT in the mid-20
th

 century, there have been several 

main paradigms that have shifted from one to the next over the years. The focus of MT 

research started mainly with a dominance of rule-based approaches that were later 

accompanied by corpus-based MT, and after that several hybrid approaches to MT have 

appeared as well. In the most recent years, neural network-based MT is rapidly starting 

to outperform other methods in most use-cases. 

This chapter introduces four of the main MT paradigms in the order of increasing 

interest by researchers and enterprise users over the course of history. Section 2.1 gives 

an insight on how MT is evaluated, section 2.2 covers rule-based, section 2.3 – corpus-

based, section 2.4 – hybrid, and section 2.5 – neural approaches to MT. 

2.1. MT Evaluation 

To understand if an automatic translation is good or not, it must be compared to what a 

human translator would be able to produce, given the same source. Manual human 

evaluation is the best for such a task, but it is expensive and impractical for performing 

on large amounts of texts on a regular basis. This creates a demand for automatic 

evaluation metrics that have a high correlation with human judgments. Some of the first 

successful and most popular metrics are BLEU (Papineni et al., 2002), TER (Snover et 

al., 2006) and METEOR (Banerjee and Lavie, 2005). 

The bilingual evaluation understudy (BLEU) is currently the most used and most 

cited MT evaluation metric. The main idea of BLEU Error! Reference source not 

found. is to reward MT outputs that have many overlapping n-grams (where n ranges 

from 1 to 4) with professional human translations (n-gram precision - Error! Reference 
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source not found., where Countclip(n–gram) is the count of n-gram matches between a 

candidate translation and a reference truncated to not exceed the largest count of that n-

gram that is observed in the reference and Count(n-gram') is the total number of n-grams 

in the test corpus), while penalizing translations that are shorter than the human 

reference (brevity penalty - (1), where c is the length of the candidate translation and r is 

the length of the reference). BLEU scores Error! Reference source not found. are 

usually computed using 4-gram precision where N=4 and weights wn=
1

𝑁
. BLEU scores 

are represented on a scale of 0.00 to 1.00, where 1.00 is the best and 0.00 – the worst, 

and the final results are typically multiplied by 100. The current state-of-the-art MT 

systems tend to reach between 20 and 40 BLEU points, depending on the language pair, 

translation direction and domain in question. Unless stated otherwise, all BLEU scores 

reported in this paper will be calculated using the multi-bleu.perl script from the Moses 

toolkit (Koehn et al., 2007). 

  (1)

    

     (1)

   

    (3)

      

2.2. Rule-based MT 

Rule-based MT (RBMT) is often denoted as the classical approach to MT. It mainly 

relies on the semantic, syntactic and morphological rules of the source and target 

languages as well as large monolingual dictionaries for each language and a bilingual 

dictionary for the actual translation between words. Most of this linguistic information 

needs to be composed by expert linguists, making it more expensive to build and expand 

if necessary. Some advantages of RBMT are complete control and ease of debugging, no 

need of large parallel corpora of texts, domain independence in many cases, and a certain 

level of reusability, for instance when using the same source language to translate into 

new target languages.  

2.3. Corpus-based MT 

Corpus-based MT uses large bilingual parallel text corpora as its primary resource. 

These corpora are used to train models for translation. Usually, the same setup can be 

used to train MT systems for multiple language pairs just by changing the training 

dataset thereby attempting to eliminate one of the general shortcomings of RBMT. One 

of the drawbacks is that while for the big and widely used languages the necessary 

corpora can be gathered in sufficient quantities, for smaller, less-used languages these 

corpora are often limited in size or non-existent at all. 

One of the main corpus-based methods is Statistical MT (SMT). SMT produces 

translations according to the probability distribution of words in the target language (e.g. 

English) are translations of sentences in the source language (e.g. French). One approach 
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to modelling this probability distribution is to apply the Bayes Theorem, where the 

translation model (TM) calculates the probability that the target sentence is the 

translation of the source sentence, and the language model (LM) calculates the 

probability of seeing that sentence appear in the target language. Using these two 

models, a decoder performs the actual translation process.  

2.4. Hybrid MT 

Hybrid MT (HMT) represents a subset of MT where different MT approaches are used 

in the same system to complement each other’s strengths in order to boost the accuracy 

level of the translation. Some of the well-known types of HMT include modifying SMT 

systems with RBMT generated output and generating rules for RBMT systems with the 

help of SMT. These systems would be categorized under the statistical rule generation 

subset of HMT. More recently NMT is used in combination with SMT (Marie et al., 

2018). The other big subsets are multi-pass, where a sentence is fully translated with one 

MT system and the output is passed on as input for another MT system, and multi-

system MT, where multiple translations of one sentence are generated in parallel. 

2.5. Neural MT 

NMT is the newest architecture for getting machines to learn to translate. NMT has 

shown promising results by achieving state-of-the-art performance for various language 

pairs (Sennrich et al., 2016). One of the main differences when compared to SMT 

methods, which consist of many small sub-components that are tuned separately, is that 

in NMT only one fully end-to-end model is trained and jointly tuned to maximize 

translation performance. Some drawbacks include a rather poor performance for long 

sentences, production of multiple repeated translations of a phrase and most notably – 

dealing with unknown words. These troubles have been addressed by shifting from word 

level translation to sub-word level or even character level translation, which introduced a 

new problem – the occasional production of new, non-existing words in the output 

translation. The first pure neural MT was introduced with encoder-decoder models 

(Sutskever et al., 2014; Cho et al., 2014) and later enhanced by adding attention 

(Bahdanau et al., 2015). More modern approaches use different neural network 

structures, such as convolutional neural networks (Gehring et al., 2017) or self-

attentional models (Vaswani et al., 2017). Currently, most state-of-the-art systems for 

popular and well-resourced to medium-resourced language pairs are either some form of 

NMT or have NMT as a key component in a hybrid setup. 

3. Combining statistical machine translation output 

3.1. Combining full sentence translations 

This section presents the first attempt in using an MSMT approach for the less-resourced 

English-Latvian language pair. The system consists of three major constituents – 

tokenization of the source text, the acquisition of a translation via online APIs and the 

selection of the best translation from the candidate hypotheses. A visualized workflow of 
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the system is presented in Figure 1. The system uses three translation APIs (Google 

Translate
6
, Bing Translator

7
 and LetsMT

8
). The section is based on the paper of Rikters 

(2015).  

 

Sentence tokenization

Translation with APIs

Google Translate Bing Translator LetsMT

Selection of the best 
translation

Output

 

Figure 1. General workflow of the translation process 

 

The best translation is selected by calculating the perplexity of each hypothesis 

translation using KenLM (Heafield, 2011). First, a language model (LM) must be 

created using a preferably large set of training sentences. Then, for each machine-

translated sentence, a perplexity score represents the probability of the specific sequence 

of words appearing in the training corpus used to create the LM. Perplexity on a test set 

is calculated using the language model as the inverse probability (P) of that test set, 

which is normalized by the number of words (N) (Jurafsky and Martin, 2014). For a test 

set W = w1, w2, ..., wN: 

 

  (2)  

 

Perplexity can also be defined as the exponential function of the cross-entropy:  

 

                                                 
6
 Google Translate API - https://cloud.google.com/translate/ 

7
 Bing Translator Control - http://www.bing.com/dev/en-us/translator 

8
 LetsMT! Open Translation API - https://www.letsmt.eu/Integration.aspx 

https://cloud.google.com/translate/
http://www.bing.com/dev/en-us/translator
https://www.letsmt.eu/Integration.aspx
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𝐻(𝑊) = −
1

𝑁
log P(𝑤1, 𝑤2, ? ? , 𝑤𝑁)        (3)  

𝑝𝑒𝑟𝑝𝑙𝑒𝑥𝑖𝑡𝑦(𝑊) = 2𝐻(𝑊)     (4)  

 

One set of experiments was conducted on the English – Latvian part of the JRC-

Acquis corpus version 3.0 (JRC) (Steinberger et al., 2006) from which both the language 

model and the evaluation data were retrieved. The language model was created using 

KenLM with order 5. The results are summarized in  

Table 2. The combination of Google Translate and Bing Translator shows 

improvements in BLEU score and WER compared to each of the baseline systems. Since 

the systems themselves are more of a general domain and the first evaluation was 

conducted on a legal domain corpus, a second experiment (shown in Table 1) was 

conducted on a smaller general domain dataset (Skadiņa et al., 2010). The results 

showed that there is potential for this method of MT combination. 

 

Table 1. Second experiment results on 512 general domain sentences. 

System BLEU 

Google Translate 24.73 

Bing Translator 22.07 

LetsMT 32.01 

Google + Bing 23.75 

Google + LetsMT 28.94 

LetsMT + Bing 27.44 

Google + Bing + LetsMT 26.74 

 

Table 2. First experiment results on 1581 random legal domain sentences from JRC. 

System BLEU TER WER 

Google Translate 16.92 47.68 58.55 

Bing Translator 17.16 49.66 58.40 

LetsMT 28.27 36.19 42.89 

Google + Bing 17.28 48.30 58.15 

Google + LetsMT 22.89 41.38 50.31 

LetsMT + Bing 22.83 42.92 50.62 

Google + Bing + LetsMT 21.08 44.12 52.99 
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Table 3. Native speaker evaluation results. 

System AVG User  Hybrid BLEU 

Bing 31.88% 28.93% 16.92 

Google 30.63% 34.31% 17.16 

LetsMT 37.50% 33.98% 28.27 

 

A random 2% (32 sentences) of the translations from the first experiment were given 

to five native Latvian speakers with an instruction to choose the best translation (just like 

the hybrid system should). The results in Table 3 show a tendency towards the LetsMT 

translation among the user ratings and BLEU score that is not visible from the selection 

of the hybrid method. 

3.2. Combining sentence fragment translations - simple fragmenting 

This section presents a method for improving the MSMT approach by incorporating 

syntactic information. One of the typical errors produced by SMT engines is wrong 

inflection (Skadiņa et al., 2012), which is usually caused by ignoring syntax rules. This 

approach attempts to improve the situation by translating smaller, linguistically 

motivated chunks of full sentences. The section is based on the paper of Rikters and 

Skadiņa (2016a). 

 

 

Sentence tokenization

Translation with APIs

Google 
Translate

Bing 
Translator

LetsMTSelection of the best 
translated chunk

Output

Sentence chunking 
(decomposition?)

Syntactic parsing

Sentence 
recomposition

 

Figure 2. General workflow of the translation process. 

 

The system consists of similar components to the one in the previous section. The 

main difference is the inclusion of syntactic components. A visualized workflow of the 
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system is presented in Figure 2. Prerequisites for compatible languages are support by 

the MT APIs for translation and the Berkeley Parser (Petrov et al., 2006) for syntactic 

analysis. 

In order to divide sentences into chunks the parse tree of each sentence is processed 

by a chunk extractor to obtain the top-level sub-trees (noun phrases, verb phrases, 

prepositional phrases, etc.). This step relies only on source language parser and does not 

consider properties of the target language, i.e., it is independent of the target language. 

The selection of the best-translated chunk is performed as described in Section 3.1 for 

full sentences. Finally, the translation of the full sentence is obtained by concatenation of 

chunks. 

Experiments were conducted using the same LM and evaluation dataset as in Section 

3.1. Automatic evaluation results are summarized in Table 4, clearly showing an 

improvement over the baseline hybrid system (MHyT) that does not have a syntactic 

pre-processing step.  

 

Table 4. Evaluation results: MHyT – baseline hybrid system, SyMHyT – syntax-based hybrid 

system. 

System 
BLEU NIST 

MHyT SyMHyT MHyT SyMHyT 

Google Translate 18.09 8.37 

Bing Translator 18.87 8.09 

LetsMT! 30.28 9.45 

Google + Bing 18.73 21.27 7.76 8.30 

Google + LetsMT 24.50 26.24 9.60 9.09 

LetsMT! + Bing 24.66 26.63 9.47 8.97 

Google + Bing + LetsMT! 22.69 24.72 8.57 8.24 

To evaluate the influence of language model size on the chunk selection process, we 

trained two 12-gram language models – one on the JRC corpus (Section 3.1) and another 

one on the DGT-Translation Memory (DGT-TM) corpus (Steinberger et al., 2012). The 

results of this experiment are presented in Table 5. The higher-order language model did 

not show improvement. Some additional experiments described in Section 3.3, using 6-

gram, 9-gram and 12-gram LMs resulted in slightly higher BLEU score, but the change 

was not statistically significant. 

 

Table 5. Influence of different language models. 

LM Size (sentences) BLEU 

5-gram JRC 1.4 million 24.72 

12-gram JRC 1.4 million 24.70 

12-gram DGT-TM 3.1 million 24.04 
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A random 2% (32 sentences) of the translations from the experiment were given to 

10 native speakers of Latvian with instructions to evaluate fluency and adequacy. The 

three baseline systems were compared with the syntax-based hybrid system that 

combines all three baselines. Evaluators were instructed to mark each sentence with one 

of the following labels: “most fluent translation”, “most precise translation”, “neither 

most fluent, nor most precise”, or “both most fluent and most precise”. In case, if a 

translation is marked as most fluent and adequate, then all others alternatives needed to 

be marked as “neither most fluent nor most precise”. Results of evaluation are 

summarized in Table 6. The free-marginal kappa (Randolph, 2005) for these annotations 

is 0.335 that indicates substantial agreement between the annotators.  

Table 6. Manual evaluation results. 

System 
Fluency 

AVG 
Accuracy 

AVG 
SyMHyT 
selection 

BLEU 

Google 35.29% 34.93% 16.83% 18.09 

Bing 23.53% 23.97% 17.94% 18.87 

LetsMT 20.00% 21.92% 65.23% 30.28 

SyMHyT 21.18% 19.18% - 24.72 

 

The table shows that about 
1

3
 of translations recognized by annotators as most fluent 

and most adequate are translations from Google Translate system. This contradicts with 

the automatic evaluation results and the selections made by the syntax-based hybrid MT, 

where a tendency towards the LetsMT! translation is observed. 

3.3. Combining sentence fragment translations - advanced fragmenting 

This section presents several methods to enrich the MSMT system with linguistic 

knowledge. The experiments described use multiple combinations of outputs from two, 

three or four online MT systems. The approach allows to increase output by 1.48 BLEU 

points when translating general domain texts. The section is based on the paper of 

Rikters and Skadiņa (2016b).  

The major components of the system are the same as in the previous section (3.2), 

and the general workflow is very similar to what was shown in Figure 2. When 

translation is performed into a morphologically rich language, a simple chunk translation 

approach may not lead to a better translation. For example, when small chunks are 

translated into Latvian, they usually will be in a canonical form that corresponds to the 

subject of the sentence but will be incorrect for the object. On the other hand, if long 

chunks are translated, then the translation usually breaks agreement rules, or the 

translation has an incorrect word order. 

Experiments were conducted on the English – Latvian language pair. Two legal 

domain corpora – JRC and DGT-TM – were used for language modelling. For 

evaluation two different evaluation sets were used – 1) the evaluation set from Section 
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3.1; and 2) the ACCURAT

9
 balanced test corpus (Skadiņa et al., 2010). As the baseline, 

we used full translations from each individual online API and simple MSMT system 

(Rikters 2015) that uses only perplexity to select the best translation from outputs of the 

online APIs.  

We evaluated two approaches in chunk translation – translation of top-level chunks 

and translation of smaller chunks that are selected based on their properties in the 

sentence. In the first experiment (SyMHyT), a parse tree of each sentence is processed 

by the chunk extractor to obtain the top-level sub-trees (noun phrases, verb phrases, 

prepositional phrases, etc.). The chunk extractor uses regular expressions to identify sub-

trees. When sub-trees are identified, they are translated with online APIs. Finally, the 

translation of the sentence is generated by a combination of translation hypothesis of 

sub-trees as it is described in section 3.3. We evaluated this approach for two SyMHyT 

systems: Bing + Google (BG) and Bing + Google + Hugo (BGH). An analysis of 

selected translated chunks revealed a discrepancy between BLEU score evaluation 

results and preferences of the selection module. In addition, we observed some apparent 

flaws, e.g. one-word chunks, one-symbol chunks or very long chunks. This motivated us 

to investigate more complex algorithm for chunk extraction.  

The enhanced chunk extractor (ChunkMT) reads output from the Berkeley Parser and 

places it in a tree data structure. During this process, each node of the tree is initialised 

with its phrase (NP, VP, ADVP, etc.), word (if it has one) and a chunk consisting of the 

chunks from its child nodes. To obtain the final chunks for translation, the resulting tree 

is traversed bottom-up post-order (left to right). A chunk is combined with the previous 

one, if it is a) non-alphabetical, b) only one symbol, or c) contains a genitive phrase. If a 

chunk is very long (length of chunk > sentence length / 4 in the first chunking iteration), 

an attempt to break it into smaller chunks is made. Figure 3 illustrates chunk extraction 

result of both MSMT systems. 

 

SyMHyT ChunkMT 

Recently 

there 

has been an increased interest in 
the automated discovery of 
equivalent expressions in 
different languages 

. 

Recently there has been an 
increased interest 

in the automated discovery of 
equivalent expressions 

in different languages . 

 

Figure 3. Examples of chunks extracted by SyMHyT and ChunkMT. 

                                                 
9
 ACCURAT balanced test corpus for under resourced languages: 

http://metashare.tilde.com/repository/browse/accurat-balanced-test-corpus-for-under-

resourced-

languages/09cf87927ef211e5aa3b001dd8b71c662b9642e71de848dd9e5c92c0ee97dd1d/  

http://metashare.tilde.com/repository/browse/accurat-balanced-test-corpus-for-under-resourced-languages/09cf87927ef211e5aa3b001dd8b71c662b9642e71de848dd9e5c92c0ee97dd1d/
http://metashare.tilde.com/repository/browse/accurat-balanced-test-corpus-for-under-resourced-languages/09cf87927ef211e5aa3b001dd8b71c662b9642e71de848dd9e5c92c0ee97dd1d/
http://metashare.tilde.com/repository/browse/accurat-balanced-test-corpus-for-under-resourced-languages/09cf87927ef211e5aa3b001dd8b71c662b9642e71de848dd9e5c92c0ee97dd1d/
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Analysis of selected chunks ( 

Table 7) revealed interesting phenomenon which needs further investigations – when 

all systems are combined, translations from the best baseline system is selected only in 

33% of cases, but from the second-best system only in 16.59% of cases. 
 

Table 7. Best results using evaluation data and LM from JRC and selected chunk percentages. 

System BLEU Equal Bing Google Hugo Yandex 

BLEU - - 16.99 16.19 20.27 19.75 

MSMT - BG 16.38 4.88% 45.03% 50.09% - - 

MSMT - BGH 17.89 2.78% 34.31% 28.93% 33.98% - 

SyMHyT - BG 17.36 4.59% 24.61% 70.80% - - 

SyMHyT - BGH 19.50 2.88% 18.01% 15.71% 63.40% - 

ChunkMT - BG 17.67 15.23% 41.14% 43.63% - - 

ChunkMT - HY 21.38 9.15% - - 44.79% 46.06% 

ChunkMT - all 20.33 2.94% 27.80% 19.67% 33.00% 16.59% 

 

For general domain data (Table 8), the best result (+1.48 BLEU) is obtained by 

combining output from all four MT systems. Just like for the legal domain, results of two 

system combination are better, when better baseline systems are combined. Increase by 

0.56 BLEU points is observed when Bing and Google systems are combined (BG).  

Table 9 presents the distribution of selected translated chunks between different MT 

engines.  Most of the translations are from hugo.lv, which can be explained with the 

choice of legal domain language model, while Google and Bing were the best baseline 

systems for the general domain. 

 

Table 8. Evaluation results on ACCURAT balanced test corpus. 

 12-gram 6-gram 

System BLEU TER BLEU TER 

JRC LMs 

BG 17.34 0.757 17.30 0.757 

HY 15.72 0.774 15.78 0.775 

All - - 15.88 0.774 

DGT LMs 

BG 18.29 0.753 17.81 0.760 

HY 17.72 0.757 16.49 0.768 

HG 18.06 0.747 - - 

All 19.21 0.745 16.36 0.776 
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Table 9. Best results using balanced evaluation data and DGT-TM LM and distribution of selected 

chunks. 

System BLEU Equal Bing Google Hugo Yandex 

BLEU - - 17.43 17.73 17.14 16.04 

MSMT - BG 17.70 7.25% 43.85% 48.90% - - 

MSMT - BGH 17.63 3.55% 33.71% 30.76% 31.98% - 

SyMHyT - BG 17.95 4.11% 19.46% 76.43% - - 

SyMHyT - BGH 17.30 3.88% 15.23% 19.48% 61.41% - 

ChunkMT - BG 18.29 22.75% 39.10% 38.15% - - 

ChunkMT - all 19.21 7.36% 30.01% 19.47% 32.25% 10.91% 

 

3.4. Combining sentence fragment translations by exhaustively searching 

across possibilities 

A problem with the approaches described in the previous sections is that they can 

potentially miss some certain combinations of chunks that only score a low perplexity 

when put together in a full sentence but not necessarily as individual chunks. With this in 

mind, as well as the increasing availability of high-performance software engineering 

techniques and computing resources for experimentation, it has become possible to not 

simply evaluate each individual translated chunk and combine them but also iterate 

through all variants of different combinations. Doing it this way allows for finding the 

best translation of a specific sentence that only ‘looks’ good as a whole but not 

necessarily that good as individual chunks. This section is based on the paper of Rikters 

(2016c).  

The full search MT system combination approach (FuSCoMT) was developed based 

on ChunkMT (Section 3.3). Therefore, its architecture is very similar to ChunkMT but 

with few key differences. The workflow of the system can be decomposed into the 

following steps: pre-processing of the source sentence, acquisition of translations via 

online APIs, and generation of MT output, as it is shown in Figure 4. The main 

difference is in the last step - the manner of scoring chunks with the LM and selecting 

the best translation. The other significant change is the utilisation of multi-threaded 

computing that allows running the process on all available CPU cores in parallel. 

      As opposed to ChunkMT, it firstly generates all unique sequential combinations of 

translations, using the given chunks. The amount of the combinations is calculated as n
r
 

where n is the number of different translation engines, and r is the number of chunks. 

Since the translation engines, in this case, are the same four as in ChunkMT, the 

combination count will be 4
r
. The next step is the scoring of each full sentence 

perplexity, using the LM. Finally, when a perplexity score has been obtained for all full-

sentence combinations, the lowest-scoring one is selected as the best candidate. 
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Figure 4. Workflow of the translation process. 

 

As opposed to ChunkMT, it firstly generates all unique sequential combinations of 

translations, using the given chunks. The amount of the combinations is calculated as n
r
 

where n is the number of different translation engines, and r is the number of chunks. 

Since the translation engines, in this case, are the same four as in ChunkMT, the 

combination count will be 4
r
. The next step is the scoring of each full sentence 

perplexity, using the LM. Finally, when a perplexity score has been obtained for all full-

sentence combinations, the lowest-scoring one is selected as the best candidate. 

To make the experiments comparable to the baseline MSMT system, the same 

corpora were used for both – training the LM and preparing evaluation data. The 

automatic evaluation results of the experiments are shown in Table 10. 

  

Table 10. Full search experiment results. 

System  
Full-

search 
ChunkMT Bing Google Hugo Yandex 

BLEU 
Legal 23.61 20.00 16.99 16.19 20.27 19.75 

General 14.40 17.27 17.43 17.72 17.13 16.03 

 

3.5. Combining sentence fragment translations with neural network 

Language Models 

This section presents an enrichment of the existing MSMT approach with the addition of 

neural language models. The core components of the system have not changed from the 

ones mentioned the previous sections. The section is based on the paper of Rikters 

(2016d).  

The baseline LM was trained KenLM as in section 3.1. In order to outperform the 

baseline, 3 neural network (NN) LM toolkits were explored. The RWTHLM toolkit 

(Sundermeyer et al., 2014) has support for feed-forward, recurrent and long short-term 
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memory NNs (Hochreiter and Schmidhuber, 1997; Gers et al., 2000). The MemN2N 

toolkit allows training an end-to-end memory network (Sainbayar et al., 2015) LM. The 

final toolkit - Char-RNN
10

 is a multi-layer recurrent NN for training character-level 

LMs. 

For training the LMs the DGT-TM corpus was used (only the first half for Char-

RNN). Evaluation and validation datasets were automatically derived from the training 

data with the proportion of 97%:1.5%:1.5%. Table 11 shows differences in perplexity 

evaluations that outline the superiority of NN LMs. It also shows that the statistical 

model is much faster to train on a CPU and that NN LMs train more efficiently on 

GPUs. The last column of Table 11 shows BLEU scores for different NN LMs. The 

results show that the approach that reaches the lowest LM perplexity slightly improves 

the final translations, as well as the LM with the highest perplexity leads to slightly 

worse translations. In these experiments, the LM quality impacts MT results in the range 

of 0.75 BLEU. 

Table 11. Results of language model perplexity experiments. 

System Perplexity 
Corpus 

size 
Trained 

on 
Training 

time 
BLEU 

KenLM 34.67 3.1M CPU 1 hour 19.23 

RWTHLM 136.47 3.1M CPU 7 days 18.78 

MemN2N 25.77 3.1M GPU 4 days 18.81 

Char-RNN 24.46 1.5M GPU 2 days 19.53 

 

4. Combining neural machine translation output 

4.1. Finding correlation between neural network attention and output 

translation quality 

NMT systems allow to save the attention values between input-output tokens. These 

values can be interpreted as the influence of the input token on the output token, or the 

strength of the connection between them. Thus, weak or dispersed connections should 

intuitively indicate a translation with low confidence, while high values and strong 

connections between one or two tokens on both sides should indicate higher confidence. 

Figure 6 shows an example of a translation that has little or nothing to do with the input, 

a frequent occurrence in NMT. This section is based on the paper of Rikters and Bojar 

(2017).  

The experiments described in this section helped the author understand possible use-

cases for NMT attention alignments, which were essential to enable NMT system 

combination described in sections 4.2 and 0. Multi-word expressions (MWEs) have been 

                                                 
10 Multi-layer Recurrent Neural Networks (LSTM, GRU, RNN) for character-level language 

models in Torch https://github.com/karpathy/char-rnn  

https://github.com/karpathy/char-rnn
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a challenge for SMT and NMT because they may not appear frequently enough in 

training data. In order to examine how MWEs are treated by NMT systems, we 1) 

trained baseline NMT systems; 2) extracted parallel MWE corpora from the training 

data; 3) trained NMT systems with synthetic MWE data; and 4) inspected attention 

alignments produced by the NMT. 

Training and development corpora were used from the WMT 2017 shared tasks
11

 

(Bojar et al., 2017a). Neural Monkey (Helcl and Libovický, 2017), was used to train the 

NMT systems with configuration provided by the WMT Neural MT Training Task
12

. To 

extract MWEs, the corpora were first tagged with morphological taggers: UDPipe 

(Straka et al., 2016) for English (En) and Czech (Cs), LV Tagger (Paikens et al., 2013) 

for Latvian (Lv). After that, the tagged corpora were processed with the MWE toolkit 

(Ramisch, 2012), and finally aligned with the MPAligner (Pinnis, 2013). This workflow 

allowed to extract a parallel corpus of about 400 000 MWE candidates for English → 

Czech and about 60 000 for English → Latvian. Full sentences containing MWEs were 

also extracted from the training corpus, serving as a separate parallel corpus. 

We experiment with two forms of the presentation of MWEs to the NMT system: 1) 

only parallel MWEs, and 2) full sentences containing MWEs. We denote the approaches 

MWE phrases and MWE sents. We mix the baseline parallel corpus with synthetic data 

so that MWEs get more exposure to the neural network in training and allow NMT to 

learn to translate them better. For En → Lv the full corpus was used. For En → Cs we 

used only the first 15M sentences. The MWEs were repeated five times in both language 

pairs. By doing this, the En → Cs dataset was reduced from 49M to 17M, and the En → 

Lv dataset increased to 4.8M parallel sentences for one epoch of training. 

 

Table 12. BLEU scores of experiments. 

Languages En → Cs En → Lv 

Dataset Dev MWE Dev MWE 

Baseline 13.71 10.25 11.29 9.32 

+MWE phrases - - 11.94 10.31 

+MWE sents. 13.99 10.44 - - 

 
 

Table 12 shows the automatic evaluation results for each approach on one language 

pair. We evaluate all setups with BLEU on the full development set (distinct from the 

training set), as shown in the column Dev, and on a subset of 611 (En → Lv) and 112 

(En → Cs) sentences containing the identified MWEs (column MWE). 

                                                 
11

 http://www.statmt.org/wmt17/translation-task.html 
12

 http://www.statmt.org/wmt17/nmt-training-task 

http://www.statmt.org/wmt17/translation-task.html
http://www.statmt.org/wmt17/nmt-training-task
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Source Just like in a city bus or a tram.  

Baseline Jako ve městé autobuse nebo tramvaji. 

Improved NMT Jen jako v městském autobuse nebo tramvaji. 

Reference Stejně jako v městském autobuse či tramvaji. 

Figure 5. Soft alignment example visualizations from translating an English sentence into Czech 

from the baseline (top, hypothesis 1) and improved (bottom, hypothesis 2) NMT systems. 

 

For inspecting the NMT attention alignments, we developed a tool (Rikters et al., 

2017a) that takes data produced by Neural Monkey as input and produces a soft 

alignment visualization by connecting words and subword units (Sennrich et al., 2016b) 

as shown in Figure 5, which shows an example translation with two systems for En → 

Cs. Here it is clear that in the baseline alignment no attention goes to the word “městě” 

or the subword units “autobu@@” and “se” when translating “city”. In the modified 

version, on the other hand, some attention from “city” goes into all closely related 

subword units: “měst@@”, “ském”, “autobu@@”, and “se”. It is also shown that in this 

example, the translation of “bus" gets attention from not only “autobu@@” and “se”, but 

also the ending subword unit of “city”, i.e. the token “ském”. 
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4.2. Simple system combination using neural network attention 

This section describes NMT systems built by the combined effort of the University of 

Latvia, University of Zurich and University of Tartu. We participated in the WMT 2017 

shared task on news translation by building systems for two language pairs: English ↔ 

German and English ↔ Latvian. We trained several baseline systems with two NMT and 

one SMT framework - Nematus (NT), Neural Monkey (NM) and LetsMT! (LMT). To 

outperform the baselines, we explored 4 areas for improvements – 1) filtering back-

translated data; 2) named entity forcing; 3) hybrid system combination; and 4) NMT-

specific post-processing. The section is based on the paper of Rikters et al. (2017a).  

We used each of our NMT systems to back-translate 4.5 million sentences of news 

corpora in each translation direction. We trained an LM using Char-RNN with 4 million 

sentence news corpora of the target languages, resulting in three character-level LMs - 

English, German (De) and Latvian. We used them to get perplexity scores for 

translations, ordered them by perplexity and used the top 50% together with the sources 

as sources and references respectively as additional filtered synthetic in-domain corpora. 

For English ↔ German, we enforced the translation of named entities (NE) using a 

custom dictionary. We performed named entity recognition (NER) using spaCy
13

 for 

German and NLTK
14

 for English, aligned the recognised entities with GIZA++ (Och and 

Ney, 2003), and created an entry in our dictionary for every pair of aligned NEs. We 

filtered the dictionary by automatically removing entries that: 1) did not contain 

alphabetical characters; 2) were longer than 70 characters or five tokens; 3) were 

differed from each other in length by more than 15 characters or two tokens; 4) started 

with a dash. During translation we identified NEs in the source text, for every NE, we 

checked whether there was a translation in our dictionary and swapped the identified 

aligned translation with the one from the dictionary. If it was not in the dictionary, we 

copied the verbatim NE expression from the source sentence to the target sentence. 

For translating between English ↔ Latvian, we used all 3 systems in each direction 

and obtained the attention alignments from the NMT systems. For each direction, we 

chose one main NMT system to provide the final translation for each sentence and, 

judging by the attention alignment distribution, tried to automatically identify 

unsuccessful translations. Two main types of unsuccessful translations that we noticed 

were: 1) when the majority of alignments are connected to only one token (example in 

Figure 6), or, 2) when all tokens strongly align one-to-one, suggesting that the source 

may not have been translated at all (example in Figure 11). In the case of an 

unsuccessful translation, the hybrid setup checks the attention alignment distribution 

from the second NMT system and outputs either the sentence of that or performs a final 

back-off to the SMT output.  

                                                 
13

 Industrial-Strength Natural Language Processing in Python -  https://spacy.io 
14

 Natural Language Toolkit - http://www.nltk.org 

https://spacy.io/
http://www.nltk.org/
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Figure 6. Attention alignment visualization for a bad translation. Reference translation: 71 traffic 

accidents in which 16 persons were injured have happened in Latvia during the last 24 hours., 

hypothesis translation: the latest , in the last few days , the EU has been in the final day of the EU 

's " European Year of Intercultural Dialogue ". Confidence scores (details in section 0): CDP = -

0.900, APout = -2.809, APin = -2.137, Total = -5.846. 

 

In post-processing of translation output, we aimed to fix the most common mistakes 

that NMT systems tend to make. We used the output attention alignments from the NMT 

systems to replace <unk> tokens with the source tokens that are aligned to them with the 

highest weight. Any consecutive repeating n-grams were replaced with a single n-gram. 

The same was applied to repeating n-grams that have a preposition between them, e.g., 

victim of the victim.  

Table 13. Experiment results for translation between English ↔ German on development 

(newsdev2017) and evaluation (newstest2017) sets. Submitted systems are in bold. 

System En → De De → En 

Dataset Devel. Eval. Devel. Eval. 

Baseline NT 27.4 21.0 31.9 27.2 

+Filtered synthetic data 30.7 22.5 36.8 28.8 

+NE forcing 30.9 22.7 36.9 29.0 

Table 14. Experiment results for translating between English ↔ Latvian on development 

(newsdev2017) and evaluation (newstest2017) sets. Submitted systems are in bold. 

System En → Lv Lv → En 

Dataset Devel. Eval. Devel. Eval. 

Baseline NM 11.9 11.9 14.6 12.8 

Baseline NT 12.2 10.8 13.2 11.6 

Baseline LMT 19.8 12.9 24.3 13.4 

NM +filtered synthetic data 16.7 13.5 15.7 14.3 

NT +filtered synthetic data 16.9 13.6 15.0 13.8 

NM+NT+LMT - 13.6 - 14.3 
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The final results of our English ↔ German systems are summarized in Table 13 and 

the results of our English ↔ Latvian systems - in Table 14. Table 15 shows how our 

systems were ranked in the WMT17 shared news translation task against other submitted 

primary systems in the constrained track (Bojar et al., 2017b). Since the human 

evaluation was performed by showing evaluators only the reference translation and not 

the source, the human evaluation rankings are the same as BLEU, which also considers 

only the reference translation. One exception is the ranking for En ↔ Lv, where an 

insufficient amount of evaluations was performed to cover all submitted systems, 

resulting in a tie for the 1
st
 place across all but one submitted systems. 

Table 15. Automatic (BLEU) and human ranking of our submitted systems (C-3MA) at the 

WMT17 shared news translation task, only considering primary constrained systems. Human 

rankings are shown by clusters according to Wilcoxon signed-rank test at p-level p<=0.05, and 

standardized mean DA score (Ave %). 

System 

Rank 

BLEU 
Human 

Cluster Ave % 

De → En 6 of 7 6-7 of 7 7 of 7 

En → De 10 of 11 9-11 of 11 9 of 11 

En → Lv 11 of 12 1-11 of 12 11 of 12 

Lv → En 5 of 6 4-5 of 6 4 of 6 

 

4.3. System combination by estimating confidence from neural network 

attention 

This section proposes usage of NMT attention alignments as an indicator of the 

translation output quality and the confidence of the decoder. It is based on the paper of 

Rikters and Fishel (2017). 

Besides the text of the translation that was shown in Figure 6, it is clear already by 

looking at the attention weights of this pair that the translation is weak, due to many 

input tokens (like the sentence-final full-stop) being most strongly connected to several 

unrelated output tokens. In other words, their coverage is too high. We introduce several 

metrics to formalize this intuition: penalizing translations with tokens with a total 

coverage of not just below but much higher than 1.0, as well as tokens with a dispersed 

attention distribution. 

The first part of our metric draws inspiration from the coverage penalty (Wu et al., 

2016b); however, it penalizes not just lacking attention but also too much attention per 

input token. The aim is to penalize the sum of attentions per input token for going too far 

from 1.0, so tokens with total attention of 1.0 should get a score of 0.0 on the logarithmic 

scale, while tokens with less attention (like 0.2) or more attention (like 2.5) should get 

lower values. We thus define the coverage deviation penalty    (5), 

where L is the length of the input sentence, i is the output token index, j - the input token 

index, α – attention probability. The metric is on a logarithmic scale, and it is normalised 
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by the length of the input sentence in order to avoid assigning higher scores to shorter 

sentences. 

    (5) 

 

It is not enough to simply cover the input; we conjecture that more confident output 

tokens will allocate most of their attention probability mass to one or a small number of 

input tokens. Thus, the second part of our metric is called the absentmindedness penalty 

(6), and targets scattered attention per output token, where the dispersion is evaluated via 

the entropy of the predicted attention distribution. Again, we want the penalty value to 

be 1.0 for the lowest entropy and head towards 0.0 for higher entropies. The values are 

again on the log-scale and normalised by the source sentence length L (i is the output 

token index, j - the input token index, α – attention probability). 

 

     (6) 

 

The absentmindedness penalty can also be applied to the input tokens after 

normalising the distribution of attention per input token, resulting in the counter-part 

metric APin. This is based on the assumption that it is not enough to cover the input 

token, but rather the input token should be used to produce a small number of outputs. 

Finally, we combine the coverage deviation penalty with both the input and output 

absentmindedness penalties into a joint metric via summation (7). 

 

 

    (7) 

 

To evaluate the metrics, we applied them to filter translations and incorporated them 

into a sentence-level hybrid translation scheme. We trained baseline systems with two 

NMT frameworks - Nematus (NT) and Neural Monkey (NM). For the baseline systems, 

we used all available parallel data from the WMT17 news translation task
15

 for En ↔ De 

and En ↔ Lv.   

We used our baseline En → Lv and Lv → En NM and NT systems to translate all 

available Latvian monolingual news domain data - 6.3 million sentences in total, and the 

first 6 million sentences from the English News Crawl 2016. For each translation, we 

used the attention provided from the NMT system to calculate our confidence score, 

sorted all translations according to the score and selected the top half of the translations 

along with the corresponding source sentences as the synthetic parallel corpus. For 

comparison, we trained a Char-RNN LM with 4 million sentences from news domain for 

each of the target languages and used them to get perplexity scores for all translations, 

order them and get the better half.  

 

                                                 
15

 EMNLP 2017 Second Conference on Machine Translation - 

http://www.statmt.org/wmt17 

http://www.statmt.org/wmt17/
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Table 16. Experiment results in BLEU for translating between English ↔ Latvian with different 

types of back-translated data using development (200 random sentences from newsdev2017) and 

evaluation (newstest2017) datasets. 

 BLEU 

System En → Lv Lv → En 

Dataset Devel. Eval. Devel. Eval. 

Baseline NM 8.36 11.90 8.64 12.40 

NM + Full Synthetic 9.42 13.50 9.01 13.81 

NM + LM-Filtered Synthetic 9.75 13.52 9.45 14.30 

NM + Attention-Filtered Synthetic 8.99 12.76 11.23 14.83 

 

We shuffled each synthetic parallel corpus with the baseline parallel corpora and 

used them to train NMT systems. We also trained a system with the full set of back-

translated data for each translation direction. Results on a subset of newsdev2017 and the 

full newstest2017 dataset are summarized in  

Table 16. As expected, adding back-translated synthetic training data allows to get 

higher BLEU scores in all cases. It can be observed that filtering out half of the poorly 

translated data and keeping only the best translations either does not decrease the final 

output quality in some cases or even further increase the quality in others when using the 

LM.  

We translated the development set with both baseline systems for each language pair 

in each direction. We used the confidence score to compare both translations of a source 

sentence and choose the better one. Results of the hybrid selection experiments are 

summarized in Table 17. For translating between En ↔ Lv, where the difference 

between the baseline systems is not that high (0.06 and 1.55 BLEU), the hybrid method 

achieves some meaningful improvements. However, for En ↔ De, where differences 

between the baseline systems are more significant (3.46 and 4.46 BLEU), the hybrid 

drags both scores down. 

Table 17. Hybrid selection experiment results in BLEU on the development dataset (200 random 

sentences from newsdev2017). 

System En → De De → En En → Lv Lv → En 

Neural Monkey 18.89 26.07 13.74 11.09 

Nematus 22.35 30.53 13.80 12.64 

Hybrid 20.19 27.06 14.79 12.65 

Human 23.86 34.26 15.12 13.24 

The last row in Table 17 shows BLEU scores for the scenario when human annotator 

preferences were used to select output sentences. An overview of human evaluator 

preferred translation selections is summarised in Table 18. The results show that out of 

all translations the human evaluators deliberately prefer one or the other system. Aside 

from En - Lv, where a slight tendency towards Neural Monkey translations can be 

observed, all others look more or less equal. This highly contrasts with the BLEU scores 
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from Table 17, where for both translation directions from English human evaluators 

prefer the lower-scoring system more often than the higher-scoring one. The final row of 

Table 18 shows how much our attention-based score matches human judgments in 

selecting the best translation. 

Table 18. Human evaluation results on 200 random sentences from the newsdev2017 dataset. 

System En → De De → En En → Lv Lv → En 

Neural Monkey 54% 42% 61.5% 47% 

Nematus 46% 58% 38.5% 53% 

Overlaps with hybrid  57% 47% 62.5% 51% 

 

4.4. Data combination for training multilingual neural machine translation 

systems 

This section describes experiments in combining data from 3 different languages to train 

a single NMT model for translating from and into multiple languages. We mainly 

followed the path of Johnson et al. (2016) by not making any modifications to the 

network architecture and modifying only the data during training and inference. We did, 

however, experiment with different encoder and decoder cell types and add 

modifications to the data iterator module for it to automatically read the multi-way 

training data in equal batches for each translation direction and add the target language 

symbol at the beginning of each source sentence. The section is based on the 

publications of Rikters et al. (2018a) and Rikters et al. (2018b). 

We trained multiplicative long short-term memory (Krause et al., 2017) (MLSTM-

SO – the baseline) models and gated recurrent units (GRU-SM, GRU-DO and GRU-

DM) models with Nematus (Sennrich et al., 2017), fully convolutional neural network 

models - (FConv-O and FConv-M) and transformer neural network models (Transf.-O 

and Transf.-M) with Sockeye (Hieber et al., 2017). The model and data configurations 

were either shallow (S) or deep (D) in the case of GRU and either one-way (O) or multi-

way (M). 

We used En ↔ Ru, En ↔ Et, and Ru ↔ Et data of multiple publicly available and 

proprietary datasets for training. One-way models were trained on En ↔ Et and Ru ↔ Et 

data and multi-way models were trained on data from all language pairs in both 

directions. The corpora were cleaned and filtered using scripts from Pinnis et al. (2017). 

An overview of the training data statistics before and after filtering for each language 

pair is given in Table 19. 

Table 19. Training data sentence counts before and after filtering. 

Language pair 
Before filtering 
(Total/Unique) 

After filtering 
(Unique) 

English ↔ Estonian 62.5M / 24.3M 18.9M 

English ↔ Russian 60.7M / 39.2M 29.4M 

Russian ↔ Estonian 6.5M / 4.4M 3.5M 
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For Estonian ↔ Russian, we selected 2000 random sentences from the training data 

to be used as development data. Development datasets for all other translation directions 

were obtained from the ACCURAT development datasets (Skadiņa et al., 2010). In the 

multi-way model training scenarios, we concatenated batches of 333 sentences from 

each translation direction, which we used as development data. As for evaluation data – 

we used the ACCURAT balanced evaluation corpus, for which the Russian version was 

prepared manually. 

We were mainly focused on improving the translation quality when translating 

between Russian (Ru) and Estonian (Et) because this specific language pair had the 

weakest performance among the baseline systems. Table 20 shows how each of the 

models compares to the baseline.  

Table 20. Translation automatic evaluation results for all model architectures on development and 

evaluation data. The best results are in bold. 

  
  

Development Evaluation 

Ru → 
Et 

Et → 
Ru 

En → 
Et 

Et → 
En 

Ru → 
Et 

Et → 
Ru 

En → 
Et 

Et → 
En 

MLSTM-SO 17.51 18.46 23.79 34.45 11.11 12.32 26.14 36.78 

GRU-SM 13.70 13.71 17.95 27.84 10.66 11.17 19.22 27.85 

GRU-DO 17.03 17.42 23.53 33.63 10.33 12.36 25.25 36.86 

GRU-DM 17.07 17.93 23.37 33.52 13.75 14.57 25.76 36.93 

FConv-O 15.24 16.17 21.63 33.84 7.56 8.83 24.87 36.96 

FConv-M 14.92 15.80 18.99 30.25 10.65 10.99 21.65 31.79 

Transf.-O 17.44 18.90 25.27 37.12 9.10 11.17 28.43 40.08 

Transf.-M 18.03 19.18 23.99 35.15 14.38 15.48 25.56 37.97 

 

The results show that the deep GRU multi-way model outperforms the one-way 

models in most cases. However, the convolutional and transformer models increase 

quality only for the low-resource language pairs. The quality improvement for Et ↔ Ru 

ranges from 2.16 BLEU points (for FConv-M on the Et → Ru evaluation set) up to 5.28 

BLEU points (for Transf.-M on the Ru → Et evaluation set). For the high-resource 

language pairs, both FConv-M and Transf.-M models show significantly lower 

translation quality than their respective one-way models. The quality decrease ranges 

from -2.11 BLEU points (for Transf.-M on the Et → En evaluation set) down to -5.17 

BLEU points (for FConv-M on the Et → En evaluation set). This shows that the newer 

NMT architectures in multi-way scenarios are beneficial only to low-resource language 

pairs. It is evident that the transformer models performed the best. For the low-resource 

language pairs, the best results were achieved by the multi-way model. However, for the 

high-resource language pairs, the best results were achieved by the respective one-way 

models. 
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5. Practical implementations 

5.1. Interactive multi-system machine translation 

This section describes a system for interactive MSMT that uses syntactic and statistical 

features and visualizes intermediate steps. Components from Section 3.3 were used as 

the back-end system (workflow visualized in Figure 2). The system allows either to 

combine output from online MT systems or user input translations (Figure 7). 

Afterwards, the system will perform syntactic analysis on the input sentence and split it 

into chunks as shown in Figure 8. The section is based on the paper of Rikters (2016a). 

 

 

Figure 7. First step - translating with online APIs (top) or combining multiple user provided 

translations (bottom). 
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In the final step ( 

Figure 9) the system provides the best combined translation and highlights which 

chunks were used from which input. It also shows the source used for each chunk and 

the confidence level of each selection. The confidence is calculated by comparing chunk 

perplexities to each other. 

 

 

 

Figure 8. Second step – input sentence chunking and syntax tree visualization. 
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Figure 9. Final step - translation combination results page. 

5.2. Visualizing and debugging neural machine translations  

This section introduces a translation inspection tool that explicitly targets NMT output, 

using attention weights corresponding to specific token pairs during the decoding 

process, by turning them into visual representations that can help humans better 

understand how output translations were produced. A key difference from other similar 

tools is that to distinguish acceptable outputs from completely unreliable ones no 

reference translations are required. The section is based on the papers of Rikters et al. 

(2017b) and Rikters (2018a). 

 

The web visualization is intended to provide an intuitive overview of one or multiple 

translated test sets by showing one sentence at a time with navigation to other sentences 

by ID, length or multiple confidence measures (section 0). For each individual sentence, 

four confidence metrics are shown, and a confidence score for each source and translated 

token (or subword unit). The alignment is represented in the following way: source 

tokens (at the top) are connected to translated tokens (at the bottom) via orange lines, 

ranging from entirely faint to very thick, as shown in Figure 10 and Figure 11. A thicker 

line from a translated token to a source token means that the decoder paid more attention 

to that source token when generating the translation. Ideally, these lines should mostly 

be thick with some thinner ones in between. When they look chaotic, connecting 

everything to everything (Figure 10) or everything in the translation to mostly just one 

token in the source, that can be an indication of an unsuccessful translation that will 

possibly have no relation with the source sentence. On the other hand, if all lines are 

thick, straight downwards, connected one-to-one (right part of Figure 11), that may point 

to nothing being translated at all. Additionally, the matrix style visualization is also 

available in the web version as shown on the left part of Figure 11. 

For each sentence, the tool displays an overall confidence score, coverage deviation 

penalty, and input and output absentmindedness penalties. The overall confidence score 

is also shown for each source token, indicating the amount of confidence that the token 

has been used to generate a correct translation, as well as for each translated token, 

indicating the amount of confidence that it is a correct translation. All of these scores are 

represented on a scale from 0 to 100 and can be used to navigate through the test set 

(Figure 12).  

The confidence score considers hypotheses translations that are long and have a 

significant overlap with the source sentence as worse translations while tolerating 

considerable overlap for shorter sentences. The overlap ratio also serves as an individual 

score for sorting, navigating and comparing sentences from a dataset as shown in Figure 

13. 
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Source Mahaj Brown , 6 , "riddled with bullets ," survives Philadelphia shooting 

Hypothesis "tas ir viens no galvenajiem , kas ir" , viņš teica. 

Reference 6 gadus vecais Mahajs Brauns "ložu sacaurumots" izdzīvo apšaudē 
Filadelfijā. 

Figure 10. An example of a translated sentence that exhibits a low confidence score. Confidence: 

27.33%; CDP: 94.81%; APout: 75.9%; APin: 72.9%. 

 
Source Kepler measures spin rates of stars in Pleiades cluster 

Hypothesis Kepler measures spin rates of stars in Pleiades cluster 

Reference Keplers izmēra zvaigžņu griešanās ātrumu Plejādes zvaigznājā. 

Figure 11. An example of a translated sentence that exhibits a suspiciously high confidence score. 

The translation here is a verbatim rendition of the input. Matrix form visualization on the left, line 

form visualization on the right. Confidence: 95.44%; CDP: 100.0%; APout: 98.84%; APin: 98.85%. 
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Figure 12. Navigation charts allow to jump to a sentence based on its length in characters (red), 

confidence (green), coverage deviation penalty (dark yellow), absentmindedness penalty for input 

(dark blue) and output (light blue). The currently active sentence is highlighted in bright yellow. 

All charts are sortable and scrollable for better user experience. 

 
Source see 0,2 mg/ml kuni 0,8 mg/ml ( 0,9 mg/ml Küprosel ) ning mõnedes 

riikides ei tohi sõiduki juhtimise ajal veres üldse alkoholi olla. 

Hypothesis на 0,2 mg/ml до 0,8 mg/ml ( 0,9 mg/ml на Кипре ) , и в некоторых 
странах в крови не может быть алкоголя. 

Match 0,8 mg/ml ( 0,9 mg/ml 

Figure 13. An example translation from Estonian into Russian, showing useful features for 

debugging translation outcomes - underlining of the longest matching substring between the 

source and translated sentences; sorting translations by overlap (pink bars) or BLEU score (purple 

bars); reference translation (grey background). 

The tool has an option to compare two translations of the same source sentence 

directly. To perform the comparison, all source sentences for both input datasets must 

match, but the target sentences may differ in output token order as well as count. 

Comparisons may be performed between translations obtained from any two of the five 

supported NMT frameworks (Nematus, Neural Monkey, OpenNMT (Klein et al., 2017), 

Marian (Junczys-Dowmunt et al., 2016) and Sockeye (Hieber et al., 2017)). Figure 14 

shows an example comparison of a sentence translated by two different NMT systems. 

On the top row is the source text and the bottom rows represent output from each 
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individual NMT system colour-coded to match the colours of the alignment lines. The 

second hypothesis (in green) exhibits stronger and more reliable output alignments to the 

content words while the first shows strong alignments coming from the stop sign. In this 

example, neither hypothesis matches the reference, but since it is only two words long 

for a source sentence of triple the length, it can hint to an oversimplified translation by 

the translator (assuming English was the original) and does not mean that both 

hypotheses are completely wrong. In fact, the second hypothesis is a fairly decent 

representation of the source sentence. 

 

 
Source the loss was by the team. 

Hypothesis 1 zaudējums bija komandas biedrs. 

Hypothesis 2 šis zaudējums bija komandai. 

Reference zaudē komanda. 

Figure 14. A direct comparison of attention alignments of translating the same sentence with two 

different NMT systems. 

A stronger penalty (8) is allocated to longer sentences that copy large amounts from 

the source, while shorter ones get more tolerance (e.g., the three-word English sentence 

“Thanks Barack Obama.” can be perfectly translated into “Paldies Barack Obama.” 

although 
2

3
 of words in the translation are the same in the source). Lt - length of the target 

sentence; S - similarity between the source sentence and the translation on the scale of 0 

- 1. 

𝑂𝑃 =  (0.8 + (𝐿𝑡 ∗ 0.01)) ∗  (3 − ((1 − 𝑆) ∗ 5))  ∗  (0.7 +  𝑆)  ∗  𝑡𝑎𝑛(𝑆) 

The final confidence score sums up all three above mentioned metrics  (9). For 

visualization purposes, each of the scores needed to be set on the same scale of 0-100%. 

To achieve that, we applied (10), where X is the score to convert and C is a constant of 

either 1 for the CDP or 0.05 for the other scores (APout, APin, confidence). 
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𝑐𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒 = {
𝐶𝐷𝑃 + 𝐴𝑃𝑜𝑢𝑡 + 𝐴𝑃𝑖𝑛,  𝑖𝑓 𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 < 0.3

𝐶𝐷𝑃 + 𝐴𝑃𝑜𝑢𝑡 + 𝐴𝑃𝑖𝑛 − 𝑂𝑃, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
   (9) 

percentage = 𝑒−𝐶(𝑋2)    (10) 

5.3. Cleaning corpora to improve neural machine translation performance 

This section describes how defective data affects NMT system training, as well as how 

to identify and deal with such data. We also show that using data filters in a hybrid 

multi-pass NMT setup can achieve state-of-the-art MT performance. The section is 

based on the papers of Rikters (2018b) and Pinnis et al. (2018). 

A common defect in parallel corpora is a high mismatch of the number of non-

alphabetic characters between source and target sentences (Figure 17). Often there are 

sentences that are entirely or mostly composed of characters outside the scope of the 

language in question (Figure 15). Another problem in parallel corpora is the same 

sentence of one language aligned to multiple different ones of the other language (Figure 

16), but this is not always a bad indication, since they may just be paraphrases of the 

same concept (Figure 18). It is also wise to check if sentences in specific languages 

actually consist of text in that language (Figure 19) as there may be citations and other 

parts of foreign language texts, especially in news domain corpora. In automatically 

generated (automatically translated) parallel corpora multiple repetitions of tokens can 

sometimes be found (Figure 20). Sentences like this may not always be incorrect, but 

they introduce ambiguity when used to train MT systems. 

 
Ô²Õ¡Ö Õ¥Ö Õ Õ¥Õ¦, ღÇáÝÇÑÓ ÇáäÈíáღ,Nader-87 அஅஅஅஅஅஅஅஅஅஅஅ ". 

MÃ©szÃ¡ros IstvÃ¡n ة ف لس ف  ,走った森 ال

Figure 15. Examples of sentences with over 50% non-alphabetical symbols. 

 
English Estonian 

I voted in favour. kirjalikult. – (IT) Hääletasin poolt. 

I voted in favour. Ma andsin oma poolthääle. 

Figure 16. An example of an English sentence aligned to multiple different Estonian sentences. 

 
English Estonian 

Add to my wishlist Hommikul (200 + 200 = 400 kcal) 

Dec 2009 ÊßÇÌí 2009 

Figure 17. An example of a high mismatch in non-alphabetical character counts 

 between source and target. 
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English Estonian 

That is the wrong way to go. See ei ole õge. 

This is simply wrong. See ei ole õge. 

Figure 18. Multiple English paraphrased sentences aligned to one Estonian sentence. 

English Estonian 

Zaghachi See okwu 3 Comments 

Täna mängitud: 25 910 Täna mängitud: 25 929 

  

Figure 19. Examples of sentences with a different identified language than the one specified. 

English Estonian 

1 If , , and are the roots of , compute . 1 Juhul kui , Ja on juured , Arvutama . 

we have that and or or or . meil on, et ja või või või . 

NXT Spray - NAPURA NXT SPRAY NXT SPRAY 

Figure 20. An example of repeating tokens (underlined). 

To tackle the mentioned problems in parallel corpora, we introduce several filters: 

 Unique parallel sentence filter – removes duplicate source-target sentence 

pairs. 

 Equal source-target filter - removes sentences that are identical in the source 

side and the target side of the corpus. 

 Multiple sources - one target and multiple targets - one source filters – 

remove repeating sentence pairs where the same source sentence is aligned to 

multiple different target sentences and multiple source sentences aligned to the 

same target sentence. 

 Non-alphabetical filters – remove sentences that contain > 50% non-

alphabetical symbols on the source or the target side, and sentence pairs that 

have significantly more (at least 1:3) non-alphabetical symbols in the source side 

than in the target side (or vice versa). 

 Repeating token filter – removes sentences with consecutive repeating tokens 

or phrases. 

 Correct language filter –estimates the language of each sentence (Lui and 

Baldwin, 2012) and removes any sentence that has a different identified 

language from the one specified. 

We used the filters to clean parallel corpora provided in the WMT17
16

 and WMT18
17

 

news MT shared tasks for English ↔ Estonian / Finnish (Fi) / Latvian. Detailed results 

of the cleaning process for three of the largest corpora - ParaCrawl, Rapid corpus of EU 

press releases (Rapid) and European Parliament Proceedings Parallel Corpus (Europarl) - 

are shown in Table 21. The results show that ParaCrawl is the most problematic corpus, 

                                                 
16

 Second Conference on Machine Translation - http://statmt.org/wmt17 
17

 Third Conference on Machine Translation - http://statmt.org/wmt18 

http://statmt.org/wmt17
http://statmt.org/wmt18
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especially the Estonian part, where 85% had to be removed. The Rapid corpus had an 

overall higher quality with about 25% of parallel sentences removed. Europarl was by 

far the cleanest corpus, having only 5-6% of sentences removed by the cleaning toolkit.  

We combined and shuffled all three En-Et corpora, resulting in 1 012 824 (46.50% of 

total) sentence parallel corpus for training NMT systems. The total amount of En-Fi 

parallel sentences was 2 719 104 (82.72% of total) after adding a cleaned version of the 

Wiki Headlines corpus, and En-Lv - 1 617 793 (35.85% of total) parallel sentences after 

adding cleaned versions of LETA translated news, Digital Corpus of European 

Parliament (DCEP), and Online Books corpora. We used the development datasets 

provided by the WMT shared tasks. 

To observe the benefit of filtering data for NMT, we trained NMT models using 

filtered and non-filtered data in both translation directions for the three language pairs. 

We used Sockeye to train transformer architecture models until convergence on 

development data. 

Table 21. Detailed results on filtering English-Estonian/Finnish/Latvian larger common parallel 

corpora from WMT shared tasks. 

 

Paracrawl Rapid Europarl 

 

En 

Et 

En 

Fi 

En 

Et 

En 

Fi 

En 

Lv 

En 

Et 

En 

Fi 

En 

Lv 
Corpus 

size 1298103 624058 226978 583223 306588 652944 1926114 638789 

Unique 
26 37 23 161463 80894 23218 52686 19652 

0.00% 0.01% 0.01% 27.68% 26.39% 3.56% 2.74% 3.08% 

src == tgt 
242816 41611 428 3488 2929 490 528 707 

18.71% 6.67% 0.19% 0.60% 0.96% 0.08% 0.03% 0.11% 

* sources  

1 target 

267235 17239 1108 1513 990 1176 6631 979 

20.59% 2.76% 0.49% 0.26% 0.32% 0.18% 0.34% 0.15% 

* targets 

1 source 

69225 9532 752 1016 329 462 3536 435 

5.33% 1.53% 0.33% 0.17% 0.11% 0.07% 0.18% 0.07% 

> 50%  

non-alpha 

200338 12919 1226 5647 1699 66 285 72 

15.43% 2.07% 0.54% 0.97% 0.55% 0.01% 0.01% 0.01% 
Non-

alpha  

mismatch 

23777 12737 6674 13311 6361 7211 24847 4012 

1.83% 2.04% 2.94% 2.28% 2.07% 1.10% 1.29% 0.63% 

Repeating  

tokens 

11210 1397 175 396 171 727 2594 703 

0.86% 0.22% 0.08% 0.07% 0.06% 0.11% 0.13% 0.11% 

Language  

mismatch 

283152 36233 14762 24854 8739 8924 10932 3301 

21.81% 5.81% 6.50% 4.26% 2.85% 1.37% 0.57% 0.52% 

Total  

removed 

1097779 131705 25148 211688 102112 42274 102039 29861 

85% 21% 11% 36% 33% 6% 5% 5% 
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The final NMT system results in Table 22 show that corpora filtering improves NMT 

quality for Estonian and Latvian systems, but not Finnish. The lack of improvement for 

Finnish is mainly due to the Europarl being the largest and at the same time the cleanest 

corpus for this language pair. The biggest corpora for Estonian and Latvian - ParaCrawl 

and DCEP respectively, were also the most problematic ones with 85% and 78% 

sentences removed respectively. 

Table 22. Translation automatic evaluation results (BLEU scores) for all translation directions on 

development data. The best results are marked in bold. The second row shows how 

much of the initial parallel corpora remained after filtering for each language pair. 

  En-Et Et-En En-Fi Fi-En En-Lv Lv-En 

Unfiltered 15.45 21.55 20.07 25.25 21.29 24.12 

Corpus after filtering 46.50% 82.72% 35.85% 

Filtered 15.8 21.62 19.64 25.04 22.89 24.37 

Difference +0.35 +0.07 -0.43 -0.21 +1.60 +0.25 
 

To test the full potential of the described methods, the highest-scoring En ↔ Et and 

En ↔ Fi models were further developed and submitted to the WMT 18 shared task: 

machine translation of news. The submitted systems were named tilde-c-nmt-2bt and 

tilde-c-nmt-1bt respectively. All developed systems ranked in the top 3-7 by automatic 

evaluation (BLEU score) out of 17-23 submissions in the constrained track (using only 

resources provided in the shared task).  

To get the highest-quality translation results, we used a multi-pass hybrid approach 

for training NMT systems. With each trained NMT system, we supplemented the parallel 

training data with an additional set of back-translated (BT) for the next system (see 

Figure 21) resulting in multiple passes of training data during training. The final 

translations are produced using only the final NMT system (i.e., NMT3), unlike the 

multi-pass approach mentioned in Section 2.4, in which each input sentence is passed 

through multiple MT systems. 

 

Src-Trg

Trg-Src

Parallel

Src-Trg

Trg-Src

Parallel 
+ Back-translated

Src-Trg

Trg-Src

Parallel 
+ Back-translated
+ Back-translated

BT1

BT2

BT2

NMT1 NMT2 NMT3

 

Figure 21. Multi-pass NMT training via double back-translation. 
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First, we trained baseline models using only filtered parallel datasets. Then, we back-

translated the first batches of monolingual news data and trained intermediate NMT 

systems. Finally, we used the intermediate NMT systems to back-translate the second 

batches of monolingual news data and trained final NMT systems. The final step was 

performed only for En ↔ Et systems.  

Automatic evaluation results using the SacreBLEU evaluation tool (Post, 2018) are 

given in Table 23. The results show that the multi-pass hybrid approach turned out to be 

the most competitive, reaching 3
rd

 place according to automatic evaluation. Table 24 

shows the manual evaluation results of the two final submissions to the shared task. The 

manual evaluation results show that there was no statistically significant difference 

between the first three En → Et systems and first seven Et → En systems, meaning that 

both tilde-c-nmt-2bt systems were tied for 1
st
 place. 

Table 23. Automatic evaluation results of the submitted systems (named tilde-c-nmt-2bt and  

tilde-c-nmt-1bt in the official submission) at the WMT18 shared news translation task, 

only considering constrained systems. 

System 
BLEU 

Score Rank 

Estonian → English 28.0 7 of 23 

English → Estonian 23.6 3 of 18 

Finnish → English 23.0 5 of 17 

English → Finnish 16.9 5 of 18 

Table 24. Automatic (BLEU) and human ranking of the submitted systems (tilde-c-nmt-2bt) at the 

WMT18 shared news translation task, only considering primary constrained systems. 

Human rankings are shown by clusters according to Wilcoxon signed-rank test at p-level 

p<=0.05 

System 

Rank 

BLEU 
Human 

Cluster Ave % 

Estonian → English 7 of 23 1-7 of 9 3 of 9 

English → Estonian 3 of 18 1-3 of 9 3 of 9 

6. Conclusions 
 

The research conducted in this paper analyses a variety of methods for combining 

multiple machine translation systems. The research is mostly dedicated to combining 

statistical and neural machine translation methods in theoretical and practical 

implementations; it also includes a theoretical overview of system combinations of rule-

based and other less popular machine translation paradigms. A majority of this research 

is focused on translation from and into Latvian, several additional experiments are 

performed with other morphologically rich languages, such as Czech, Estonian, Finnish, 

German and Russian.  
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The four main results are: 1) a method for hybrid MT combination using chunking 

and neural language models; 2) a method for hybrid NMT combination using neural 

network attention alignments; 3) a method for multi-pass incremental training for NMT; 

4) graphical tools for overviewing and debugging the processes. The work conducted is a 

substantial contribution to the field of machine translation on a national and international 

level: 1) the author’s initial idea of employing an LM to score translations and choose 

the  best has proven to be useful even after the paradigm shift from SMT to NMT; 2) 

among noteworthy contributions of this work are also several state-of-the-art MT 

systems (Estonian ↔ Russian and Estonian ↔ English) along with details and required 

tools for reproducibility; 3) the tool for NMT output comprehension using attention 

alignments not only clearly displays the relation between the source text and the 

translation, but also is the first and only tool that allows the user quickly locate worse 

example translations to better understand shortcomings of the MT system in question. 

The method for hybrid MT combination via chunking and neural language models 

has proven to outperform individual similar-quality systems in machine translation of 

texts with very long sentences. The method demonstrated good performance when 

working with SMT output, while for NMT output and shorter sentences the chunking 

method had little to poor influence. Nevertheless, even without chunking part, it is still 

often very useful to rescore NMT output or choose the best translation using a neural 

LM. 

The hybrid combination method for NMT via neural network attention alignments 

complies with the emerging technology of neural network MT. It helps distinguish low 

quality resulting translations from high-quality ones without any references and use them 

in a hybrid combination setup. Aside from using the method for combining MT output, it 

has been employed in several MT quality estimation research papers (Ive et al., 2018; 

Yankovskaya et al., 2018).  

The hybrid method of multi-pass incremental training for NMT allowed to be 

between the top-3 best systems in the annual news translation competition when 

translating into a morphologically-rich and low-resourced language – Estonian. Since the 

difference in human evaluation between the top-3 systems was not statistically 

significant (while it was statistically significant when compared to all other systems), 

both systems can be considered as the current state-of-the-art for Estonian ↔ English 

MT. The method has also proven to be competitive for systems translating into Finnish, 

Latvian and other complex languages and it is anticipated that it will be widely used in 

this year’s WMT shared task for news translation.  

The developed graphical tools help to inspect how translations are composed from 

component systems, and overview results of generated translations to locate better or 

worse results quickly. Aside from being useful for researchers to help them understand 

how systems produced specific output, these tools can also help people using public 

online MT systems, by outlining correlation between source and translation words. The 

NMT visualization and debugging tool is used to teach students in Charles University, 

the University of Tartu and in the University of Zurich. 
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