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Abstract. This paper considers the state assignment problem of finite automata from the com-
plexity point of view. A new complexity measure for finite automata and regular languages, BC-
complexity, is introduced, which essentially is the circuit complexity of the transition function of
the automaton.
BC-complexity of regular languages is compared with their state complexity and matching upper
and lower bounds are obtained for almost all languages with given state complexity. Such bounds
are obtained also with a respect to the nondeterministic state complexity but in this case they are
not matching. It is proved that the minimization of finite automata can lead to a superpolynomial
increase of their BC-complexity.
Finite automata represented with a Boolean circuit are considered also from the computational
complexity point of view. It is shown that many simple problems (state reachability or equiva-
lence, minimization of automata) in this representation are PSPACE-complete.
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1 Introduction

State complexity of finite automata and regular languages has been studied since the
beginning of the automata theory and since then it has been the main measure of com-
plexity in automata theory. But, although it works well for automata in the standard
representation, sometimes it does not fully reflect the ”intuitive” complexity of the au-
tomaton when we come to its implementation.

State assignment problem is a problem of finding an encoding of the states of an
automaton that allows a ”simple” implementation of its transition function and it also
has been studied since the beginning of automata theory (Hartmanis and Stearns, 1962).
This ”simplicity” can be interpreted in various ways. While standard optimization meth-
ods try to minimize the dependencies among state variables that leads to an effective
implementation of the transition function as a Boolean circuit (Kohavi and Jha, 2009),
there are also other approaches that, for example, try to minimize the average switching
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of memory elements (Kajstur and Kania, 2017) that corresponds to the minimal power
dissipation of the circuit.

Although state assignment problem has been studied for more than 50 years, it has
been considered only as a an optimization problem. This can be illustrated by the fact
that its goal in many papers is called ”minimizing the area of the circuit” (De Micheli et
al., 1985), showing the practical nature of this research. But state assignment problem
is also a natural complexity problem, that until now has not been considered in the
literature as that. The main objective of this work is a theoretical analysis of this model
from the descriptional and computational complexity points of view.

When we express a finite automaton as a Boolean circuit then intuitively its number
of states does not seem to be the best complexity measure as the complexity of this
circuit can vary for automata with the same number of states. Therefore in the first part
of this work we introduce a complexity measure for the circuit representation of finite
automata, BC-complexity.

BC-complexity is then compared to the state and nondeterministic state complex-
ities of finite automata. In both cases upper and lower bounds are obtained and in the
case of the deterministic state complexity they are matching for almost all languages.
This is the so called Shannon effect.

It is known since sixties (Hartmanis and Stearns, 1962) that state minimization of a
DFA can lead to an increase in the complexity of the circuit describing it. But until now
it has been justified only with some small examples. In this work it is proved that state
minimization of a DFA can lead to a superpolynomial increase of its BC-complexity.

In the final part of this work the computational complexity of this model is consid-
ered. The main problem from this point of view certainly is to estimate the complexity
of finding an optimal circuit representation for a given automaton. Here it is proved that
if the automaton is already given in some circuit representation then this problem is
PSPACE-complete. PSPACE-complete are also some intuitively simpler problems, for
example, to determine for a given automaton whether two of its states are equivalent.

This paper is a summary of the work done by the author that has been published in
a series of papers (Valdats, 2011, 2014, 2018).

2 Preliminaries and Notation

It is assumed that the reader is familiar with the basics of the theory of computing: DFA,
nondeterministic finite automaton (NFA), regular languages, Turing machine, language
complexity classes (PSPACE, NP, ...).

Let sc(L) (nsc(L)) denote the state (nondeterministic state) complexity of a regular
language L. Let Lk

s (Nk
s ) denote the set of all regular languages in a k letter alphabet,

whose state (nondeterministic state) complexity does not exceed s.
We will also use Boolean functions and circuits in the standard base (&,∨,¬). The

Shannon function is lexicographically the first Boolean function with n inputs and one
output whose complexity is maximal (for this n).



344 Valdats

For asymptotic comparison we will use the following notation that is taken from
(Lupanov, 1984):

f(n) . g(n) ⇐⇒ lim
n→∞

f(n)

g(n)
≤ 1. (1)

This notation is more accurate than the standard big-O notation as it takes into account
constant factors. It can be expressed with the standard notation in the following way

f(n) . g(n) ⇐⇒ f(n) < g(n)(1 + o(1)). (2)

For a family of finite sets {Sn}we will say that a property P (x) is true for almost all
x ∈ Sn, if the fraction of x for which P (x) is not true tends to zero when n increases:

P (x) for almost all x ∈ Sn ⇐⇒ lim
n→∞

|{x ∈ Sn : ¬P (x)}|
|Sn|

= 0. (3)

3 Encodings and Circuit Representation of DFA

Usually DFA are represented with their state table or their state transition diagram what
is essentially the same, the diagram can be thought of as a visualization of the state
table. Both these representations depict each state of a DFA separately, therefore with
these methods one cannot describe automata with a large number of states.

The s states of the automaton can be encoded into dlog se state bits. Also the input
(and if necessary, also output) symbols can be encoded as bit vectors. Each DFA has
many such encodings. If we do not restrict the number of state bits by dlog se then there
are infinitely many.

In such a case the arguments of the transition function of the DFA are an encoded
state and an encoded input and it computes an encoded next state value. Represented
in this way, it is a Boolean function and a natural way to describe it is with a Boolean
circuit.

It is also necessary to describe the set of the accepting states. We will describe it
with a circuit that computes the characteristic function of this set.

In such a way we can describe a DFA with encodings of its state set and its input
alphabet together with two Boolean circuits F and G: the first for its transition function
and the second for the characteristic function of the set of the accepting states. These
circuits we will further call the transition circuit and the acceptance circuit and together
they will form the circuit representation of a DFA (F,G).

4 BC-complexity

4.1 BC-complexity of DFA and Regular Languages

Definition 1. The BC-complexity of the circuit representation of a DFA (F,G) is the
sum of the complexities of its transition circuit, its acceptance circuit and of the number
of state bits:

CBC((F,G)) = C(F ) + C(G) + bQ. (4)
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Here and further by C(A) we denote the number of gates in the circuit A.
Why do we add the number of state bits bQ? It ensures that the BC-complexity of

arbitrarily large DFAs cannot be zero which will be essential in the further estimations.
The BC-complexity of a DFA is the minimal BC-complexity among all its cir-

cuit representations. The BC-complexity of a regular language is the minimal BC-
complexity among all DFAs that accept it.

BC-complexity is an abbreviation of Boolean Circuit Complexity and, although it
would be nice to call it just circuit complexity, this term in the case of regular languages
already has a different meaning.

4.2 Estimation of the lower bound of BC-complexity

Essentially BC-complexity is a circuit complexity and to estimate its lower bound we
need to estimate a lower bound of the circuit complexity. It is a well-known hard prob-
lem for which the best known lower bounds in the general case are linear.

For this reason usually lower bounds for the circuit complexity are obtained using
pigeonhole principle. If the number of circuits with a complexity not exceeding r is less
than the size of the given class of Boolean functions, then this class contains a function
with complexity larger than r.

For BC-complexity we will use a similar method, all further lower bounds will be
obtained using the following theorem:

Theorem 1. Let Li be a family of sets of increasing size that consist of regular lan-
guages in a fixed alphabet Σ. For arbitrary constant a for almost all L ∈ Li

CBC(L) >
log |Li|

log log |Li| − a
. (5)

Proof. Proof is done by the pigeonhole principle. Each regular language has a minimal
automaton that accepts it that has a circuit representation. Number of circuit represen-
tations with BC-complexity not exceeding log |Li|

log log |Li|−a is much smaller than the size
of Li for sufficiently large i. ut

4.3 BC-complexity and State Complexity

The following theorem shows that BC-complexity for regular languages with a given
state complexity s can differ at most exponentially.

Theorem 2. For an arbitrary regular language L with state complexity s in a fixed
alphabet |Σ| = k

dlog se ≤CBC(L) . (k − 1)s, if k ≥ 2, (6)

dlog se ≤CBC(L) .
s

log s
, if k = 1. (7)
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Proof. The lower bound. To encode s states we need at least dlog se state bits, therefore
for any circuit representation (F,G) that represents a DFA that accepts L

CBC(F,G) = C(F ) + C(G) + bQ ≥ bQ ≥ dlog se . (8)

To prove the upper bound we consider the minimal DFA (with s states) that accepts
L. If we choose an arbitrary minimal encoding (with bQ = dlog se state bits) and
construct a circuit representation using methods for optimal circuit construction we
get that its BC-complexity is not larger than ks.

To improve this result from ks to (k − 1)s we can choose this minimal encoding in
a way that for a specific input symbol the transition function is relatively simple. Short
summary of the idea: choose an arbitrary input symbol and consider the state transition
graph for this particular symbol. It consists of connected components each of which
looks like a “loop” with a possible “tail”.

These components can be ordered according to their parameters (length of the loop
and the tail) and this ordering of components naturally determines an ordering of states,
which we can use as an encoding. For this encoding the complexity of the transition
circuit for this input symbol is negligible with a respect to other input symbols, therefore
the total BC-complexity decreases from ks to (k − 1)s. ut

Further we consider two particular languages with the same state complexity for
whom the difference in BC-complexity is indeed exponential.

The first language Ln in a binary alphabet Σ = {0, 1} consists of all words for
which the n-th last symbol is “1”: w ∈ Ln ⇐⇒ w|w|−n+1 = 1. Its state complexity
is 2n, any DFA that recognizes it needs to remember the last n input symbols. But its
BC-complexity is n.

The second language LSh
n consists of words in a binary alphabet, such that the

Shannon function returns 1 if applied to their last n bits:

w ∈ LSh
n ⇐⇒ Shn(wk−n+1, wk−n+2, . . . , wk) = 1. (9)

One can show that its state complexity does not exceed 2n but its BC-complexity is
at least 2n/n2. The BC-complexity of this language is close to the upper bound of
Theorem 2, but still there is a gap. It would be nice to find a language that reaches the
bound exactly.

It turns out that almost all languages reach the upper bound of Theorem 2.

Theorem 3. For almost all languages L ∈ Lk
s

CBC(L) &(k − 1)s, if k ≥ 2 (10)

CBC(L) >
s

log s
, if k = 1 (11)

Proof. This can be obtained with the aid of some algebra from Theorem 1 and the
estimation of |Lk

s | that can be found in (Domaratzki et al., 2002). ut
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4.4 Shannon effect for the BC-complexity

If we look carefully at Theorems 2 and 3 we can notice that the upper bound of the first
one is the same as the lower bound for the last. This is called the Shannon effect: For
almost all regular languages with a given state complexity their BC-complexity is close
to its maximal possible value.

Corollary 1. For almost all languages L ∈ Lk
s

(k − 1)s . CBC(L) .(k − 1)s, if k ≥ 2 (12)
s

log s
< CBC(L) .

s

log s
, if k = 1 (13)

5 BC-complexity and nondeterministic state complexity

Knowing that nsc(L) ≤ sc(L) ≤ 2nsc(L) allows us to use previous estimations of BC-
complexity (Theorem 2) to obtain the first ”naive” estimations of the BC-complexity of
regular languages with respect to their nondeterministic state complexity s = nsc(L):

dlog se ≤ CBC(L) . (k − 1)2s. (14)

The lower bound cannot be improved too much. To show this one can remember
that there are languages whose nondeterministic state complexity is the same as their
state complexity.

But the upper bound in formula (14) can be improved exponentially as will be shown
later. From that we can conclude that in those cases when in the process of determiniza-
tion the number of states grows exponentially, the resulting automaton has a simple
structure and its BC-complexity is relatively small.

We will start with a simple estimation of the BC-complexity of a DFA that is ob-
tained from an NFA using the powerset construction and continue with some improve-
ments that lead to a near-optimal solution.

Theorem 4. If a regular language L in a k-letter alphabet can be recognized with an
s-state NFA with t transitions then

CBC(L) ≤ t + (k + 1)s. (15)

Proof. We construct a circuit representation of a DFA that is obtained from an NFA
using the powerset construction. Each state bit in this circuit representation corresponds
to one state of the NFA. Transition function in this case is relatively simple and the result
can be obtained by carefully counting logic gates. ut

As the number of transitions of an NFA does not exceed ks2 then

Corollary 2. For all languages in L ∈ Nk
s :

CBC(L) ≤ ks2 + (k + 1)s. (16)
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Estimation (15) is good if the number of transitions in the NFA is small (as it is, for
example, in the case of a ”reversed” DFA), but in the general case it can be improved
by an order of log s.

Theorem 5. For all L ∈ Nk
s :

dlog se ≤ CBC(L) .
ks2

log s
. (17)

Proof. For the upper bound we use the same construction as in Theorem 4, but the
construction of the transition circuit is optimized. ut

As it was noted in the beginning of the chapter, the lower bound of Theorem 5 is
closely reachable. To show that the upper bound also is closely reachable we will act
similarly as in the case of state complexity and estimate the BC-complexity of almost
all languages with a given nondeterministic state complexity

Theorem 6. For almost all languages in L ∈ Nk
s

CBC(L) >
(k − 1)s2

2 log s
, if k ≥ 2, (18)

CBC(L) >
s

log s
, if k = 1. (19)

Proof. These estimations with the aid of some algebra can be obtained from Theorem 1
and the estimation of |Nk

s | taken from (Domaratzki et al., 2002). ut

If we put together the upper and lower bounds (Theorems 5 un 6) we obtain the
following.

Corollary 3. For almost all languages L ∈ Nk
s

(k − 1)s2

2 log s
< CBC(L) .

ks2

log s
, if k ≥ 2, (20)

s

log s
< CBC(L) .

s2

log s
, if k = 1. (21)

One can see that the upper and lower bounds do not coincide. If k ≥ 2 they differ
by a constant factor (4 if k = 2 or less if k > 2), but if k = 1 the difference is more
than by a constant factor. It would be nice to prove the Shannon effect also in this case,
but it looks like a hard problem.

6 Language operations

In this chapter we investigate how BC-complexity changes with some language opera-
tions: union, intersection, concatenation, Kleene closure and reversal. Table 1 compares
the upper bound of the BC-complexity and the state complexity for each of these op-
erations. For all operations m = sc(L1), n = sc(L2), a = CBC(L1), b = CBC(L2),
k = |Σ|.
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Table 1. Upper bound of state complexity and BC-complexity for language operations

Operation State complexity BC-complexity
L1 ∪ L2 mn a+ b+ 1

L1 ∩ L2 mn a+ b+ 1

LR 2m (2k + 4)m

L1L2 m2n − 2n−1 a+ (2k + 3)n

L∗
1 2m−1 + 2m−2 (3k + 1)m

One can see that for all the operations the upper bound of the BC-complexity of
the obtained language is smaller than the maximal BC-complexity for the correspond-
ing number of states. For example, in the case of concatenation for almost all languages
with state complexity m2n−2n−1 their BC-complexity is around (k−1)(m2n−2n−1)
(Theorem 1) which is much larger than the maximal BC-complexity for languages ob-
tained by concatenation (a + (2k + 3)n).

7 BC-complexity and the Minimization of DFA

State assignment problem is deeply connected with state minimization. One can naively
think that to obtain the best implementation for a given language one can first minimize
the given DFA and then perform the state assignment, but that is not true, not always
the minimized DFA will have as good implementation as the original one.

Already in 1962 Hartmanis and Stearns (1962) considered an 8-state DFA which
can be realized with 19 diodes, but if it is minimized to 7 states then it needs already
22 diodes (it is not the lower bound but the best implementation known to the authors).
Other authors also emphasize that state minimization should not be considered sepa-
rately from state assignment, but these problems should be addressed synchronously
(Calazans, 1993).

It turns out that the BC-complexity of the minimal DFA of a regular language can
differ from the BC-complexity of the language itself not only ”by 3 diodes” but more
than polynomially. Denote by M(A) (M(L)) the minimal DFA that is equivalent to A
(that accepts L).

Theorem 7. If there exists a polynomial p(x) such that for all regular languages in a
binary alphabet CBC(M(L)) < p(CBC(L)) then PSPACE⊆ P/poly.

Proof. For an arbitrary language V ∈ PSPACE one can construct a DFA AV
n that works

in a binary alphabet and accepts a word w iff its prefix of length n belongs to V , but it
does that after exponentially long time (it ignores the rest of the word). This DFA has
a polynomial BC-complexity with respect to n, one can construct it by simulating the
Turing machine for V in the state space of the automaton.

If the BC-complexity of the corresponding minimal DFA M(AV
n ) is polynomially

bounded by CBC(AV
n ) then it has a circuit representation whose BC-complexity is poly-

nomial in n.
But the minimal DFA M(AV

n ) will ”know” whether the input should be accepted
already after the first n input letters, it will be in one state if w1w2 . . . wn ∈ V or in
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another if w1w2 . . . wn /∈ V . Using this fact one can construct a circuit that recognizes
the words of length n of the language V and this circuit will have a polynomial (in n)
complexity. ut

Karp-Lipton theorem says that if NP⊆P/Poly then the polynomial hierarchy col-
lapses to its second level Σ2

P . Also it is well known that if PSPACE ⊆ P/poly then
PSPACE⊆ ΣP

2 ∩ΠP
2 . Therefore it is widely assumed (although not proved) that PSPACE6⊆

P/poly is true.

8 Computational Complexity for DFA in Circuit Representation

If we consider problems like state equivalence, DFA equivalence or minimization then
for DFA in standard representation they all are solvable in polynomial time. Because
of this simplicity their complexity analysis is rarely mentioned in the literature with the
exception of DFA minimization which is a bit harder problem than the others and also
significant in practice.

But the situation changes completely if we consider these problems for DFA given
in their circuit representation. It turns out that in such a case all these problems are
PSPACE-complete.

At first we will show that state reachability for DFA in circuit representation is
PSPACE-complete. Denote by REACHCR the language consisting of all pairs (s, (F,G))
where (F,G) is a circuit representation of a DFA and s is a state that is reachable in it.

Theorem 8. For a fixed input alphabet, REACHCR is PSPACE-complete.

Proof. To prove this we will use the theory of succinct representation of algorithmic
instances that was developed in the 80-s and 90-s (Borchert and Lozano, 1986). Two
basic concepts of this theory are succinct instances and polylogarithmic time reduction.

The hardest part of the proof is to show that REACHCR is PSPACE-hard. At first
one can show that state reachability for DFA in standard representation is NL-complete
under polylogarithmic time reduction. Then using the theory of succinct representations
of algorithmic instances one can conclude that state reachability for DFA in a succinct
representation is PSPACE-hard. And finally the circuit representation of a DFA can be
obtained in polynomial time from its succinct representation. ut

Using this result we can show that many more problems for DFA in circuit repre-
sentation are PSPACE-complete.

Theorem 9. The following problems are PSPACE-complete:

1. Given a circuit representation of a DFA and (an encoding of) two of its states,
determine whether these states are equivalent.

2. Given a circuit representation of a DFA, determine whether the language it accepts
is the empty language.

3. Given two circuit representations of DFAs, determine whether these DFAs are equiv-
alent.

4. Given a circuit representation of a DFA and a number k, determine whether there
is an equivalent DFA with BC-complexity at most k.
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Proof. For each of these problems one can relatively easily show that they are in PSPACE
and for the hardness we can use reduction. The first problem can be reduced to Theo-
rem 8, the third and the second ones can be reduced to the first one and the fourth one
can be reduced to the third one. ut

The last problem in Theorem 9 is the optimal circuit representation problem for
DFA stated as a decision problem. It shows that despite the fact that the minimal DFA
can easily be found in polynomial time, finding the optimal circuit representation is
PSPACE-complete.

But this is not the most natural setting of the problem. If we return to the state
assignment problem then usually the question asked is: find an optimal (minimal) circuit
representation for a DFA given in the standard (state table) representation. If we look at
this problem formally then it actually can be set in two slightly different variants:

1. Given DFA in a standard representation determine if its BC-complexity is less than
a given integer k.

2. Given DFA in a standard representation determine if the BC-complexity of the
language it accepts is less than a given integer k.

In the first case we need to find a minimal circuit representation for a given DFA,
but in the second case we can take any equivalent DFA as well. Both these problems
are in PSPACE but at least for the first problem one can relatively easily prove that it is
in NP.

At the first moment it seems that we can prove the same also for the second for-
mulation. Indeed, we can nondeterministically guess an equivalent DFA, its encoding
and circuit representation and then in polynomial time check their equivalence and also
check that this guessed circuit representation represents this DFA. But unfortunately
we cannot guarantee that the number of states of this equivalent DFA is polynomially
bounded.

Thereby the question how hard is the state assignment problem turns out to be quite
nontrivial. In the first formulation (when we want to find a circuit representation for a
particular DFA) it belongs to NP, but there is no evidence about its NP-completeness,
rather opposite, there is some evidence that it is not the case (Kabanets and Cai, 2000).
In the second formulation this question is even harder, we even do not know if it is in
NP.

In the end we can note that in the case when we are given an NFA instead of a DFA
then the optimal circuit representation problem is PSPACE-complete. Indeed, it is well
known that to determine whether a given NFA is equivalent to the all-accepting DFA is
a PSPACE-complete problem (Garey and Johnson, 1979). That means that our problem
in the case of NFA is PSPACE-complete even for k = 0.

9 Conclusions

The main subject of this work is the BC-complexity of DFA and regular languages what
can be interpreted as a formalism for the state assignment problem of DFA. Although
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its definition is simple and one could have analyzed it already in the 60-s, this question
until now has not been considered from the complexity point of view.

BC-complexity characterizes the internal structure of the DFA. In case if a DFA
has no internal structure its BC-complexity is close to its state complexity but in case
it has it can be even exponentially smaller (Theorem 2). So called Shannon effect for
the BC-complexity tells that almost all regular languages with a given state complexity
have ”no internal structure”, their BC-complexity is close to the maximum.

The same question for the nondeterministic state complexity is considered in Chap-
ter 5. Upper and lower bounds for the BC-complexity with a respect to the nondeter-
ministic state complexity are quite close (they differ 4 times in the case of a binary
alphabet), but do not coincide. Therefore the question about the Shannon effect for
languages with a given nondeterministic state complexity remains open.

The upper bounds for the BC-complexity of some language operations have been
estimated. All of them are smaller than the BC-complexity for almost all languages
with the corresponding state complexity that tells us that they are described by automata
”with internal structure”.

One of the most interesting results of this work can be found in Chapter 7. It proves
in a strong form the well known fact that the minimization of a DFA can lead to the loss
of its internal structure. Until now it was justified only by some small examples, but
Theorem 7 says that the BC-complexity of the minimal DFA of a regular language is not
even polynomially bounded with the BC-complexity of the language itself (supposing
PSPACE/∈ P/Poly).

But another problem which in some sense is similar to the previous one remains
unsolved: can we decrease the BC-complexity for a DFA if we use an encoding which
is not minimal. An n-state DFA can be encoded into dlog ne state bits. Could it happen
that the minimal circuit representation of this DFA has more than dlog ne state bits?

Many problems that are so easy for DFA given in the standard representation that
their complexity analysis is hard to find in the literature (e.g. state reachability, equiva-
lence) turn out to be much harder for DFA given in their circuit representation. A few of
such problems are shown to be PSPACE-complete in Chapter 8 including the problem
of finding the optimal circuit representation of a DFA given in circuit representation.
But for a DFA given in the standard representation (what is probably the most practical
problem statement) the complexity of this problem remains unknown.
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