
Baltic J. Modern Computing, Vol. 7 (2019), No. 3, 436-443
https://doi.org/10.22364/bjmc.2019.7.3.10

Study of Convergence in Metaheuristics Algorithms

Donatas KAVALIAUSKAS
1
, Leonidas SAKALAUSKAS

2

1Data Science and Digital Technologies, Vilnius university, Vilnius, Lithuania
2Fundamental Sciences, Vilnius Gediminas technical university, Vilnius, Lithuania

donatas.worshipper@gmail.com, leonidas.sakalauskas@vgtu.lt

Abstract. Artificial intelligence (AI) system purpose is to help humans solve problems. This

branch of science became famous less than a hundred years ago. Since then, it has gained

momentum and scale. This area is currently associated with many methodologies, some of which

are called metaheuristics algorithms. In this work, we will look at several metaheuristics

algorithms. Comparison of algorithm solutions will be performed. We compare the accuracy of the

results, the speed of the solution, and other parameters. They will solve one of the classic NP

problems. This problem is named a scheduling problem. This paper presents an approach for

enhancement of this balance in single solution metaheuristics applied to solve two processors

scheduling problem generated during metaheuristic search. We compare Simulated Annealing

(SA) algorithm with our develop modification amongst to other well-known metaheuristics like a

genetic algorithm (GA) and artificial ant colonies algorithm (ACA) taken from the source of

literature.

Keywords: Artificial intelligence, metaheuristics,

Introduction

Many discrete problems are NP-hard in nature and therefore are possible to solve only

by exponential or higher complexity algorithms. To this end, the attention is drawn on

heuristic or metaheuristic methods to allow us to address the discrete global optimization

problems effectively. By contrast, the variables in discrete optimization problems are

allowed to take on any values permitted by the constraints.

A successful metaheuristic should provide a balance between the exploration

(diversification) and the exploitation (intensification) of the search space. An

investigation is needed to identify parts of the search space with high-quality solutions to

intensify the search in some promising areas of the accumulated search experience. Of

course, enhancement of a balance between exploration and exploitation is a challenging

task for improving the efficiency of metaheuristics. This paper presents an approach for

enhancement of this balance in single solution metaheuristics applied to solve discrete

problems, varying the neighborhood of solution generated during metaheuristic search.

The modification of the well-known metaheuristics of genetic algorithm (GA), artificial

ant colonies algorithm (ACA) and Simulated Annealing (SA) algorithm with

modification. These algorithms are widely applied for solving various discrete global

optimization problems.

https://doi.org/10.22364/bjmc.2019.7.3.10
mailto:donatas.worshipper@gmail.com
mailto:leonidas.sakalauskas

 Study of Convergence in Metaheuristics Algorithms 437

Simulated Annealing algorithm

Simulated annealing is a global search and optimization method, that is based on the

principles of thermodynamics, and from the statistical standpoint, it ensures achieving

global optimum if temperature decrease rate (temperature schedule) is chosen properly

(Gelatt et al., 1983). This method has extensive functionality in both continuous and

discrete regions, simultaneously. SA choose a point with a density function g(x) around

current state x*. Then, the cost of new state is calculated by cost function, and at last, an

acceptance function h(x) decides to accept this state or not. It is clear that if the new rule

has lower cost, it has a higher chance to be taken. At the beginning of the search, range

of possible new points is extensive, and the possibility of acceptance and denial is almost

equal due to high temperature. With decrease in temperature, a variety of new state will

be decreased, which leads to an increase in resolution.

In the next part, we will explain how SA works. Our adapted SA algorithm for

discrete global optimization can be described as follows.

Step 0. Let x0 ε X be a given starting point, z0 = {x0} and k = 0;

Step 1. We calculate the temperature parameter T at iteration k on which the number

of elementary transformation operations depends. We constructed special neighborhood

depth (ρk) generating algorithm, based on generation of stable Pareto values:

Step 1. 1. Set initial 𝑖: = 1 and 𝑇: = 0.

Step 1. 2. Generate U1 and U2, uniformly distributed in (Gelatt et al., 1983), and

(Weise, 2011). Then calculate:

Z ∶= (
𝑠𝑖𝑛((𝛼−1)⋅𝑈1⋅𝜋)

− 𝑙𝑛(𝑈2)
)

1−𝑎

𝑎
⋅

⋅𝑠𝑖𝑛(𝛼⋅𝑈1⋅𝜋)

(𝑐𝑜𝑠(𝛼⋅
𝜋

2
)⋅𝑠𝑖𝑛(𝑈1⋅𝜋))

1
𝛼

 (1)

T := T + Z (2)

where the value of parameter α is selectable between 0 and 1. In the following

calculation value of this parameter was used as 0.85.

Step 1. 3. Calculating a ρk value:

 𝜌𝑘 = {
𝑖, 𝑇 ≥ 𝑇0

𝑖 + 1, 𝑇 < 𝑇0
 (3)

here neighborhood depth (ρk) value is monotonically depends on temperature and

parameter i belongs to the number of iterations. The parameter T0 has a predefined value

that is half the number of possible allowable elementary transforms. In terms of

assigning a task to one executive or another, that would be half the number of tasks

available. (Gelatt et al., 1983).

438 Kavaliauskas and Sakalauskas

Step 2. A new solution is being developed by carrying out elementary

rearrangements up to the permitted temperature by volume to the solution set In the

following calculations as simply rearrangements were used randomly shift and swap

operation in the solution set.

Step 3. We calculate the objective function with new meanings of values.

Step 4. The resulting value is checked using the Metropolis-Hastings (MH) criterion

algorithm, which is expressed in:

Step 4.1. Select the initial value θ;

Step 4.2. Iteration t proposes to go to the value of θ * with the probability

Jt (θ * | θ (t-1));

Step 4.3. Calculate the acceptable ratio (opportunity) (Weise, 2011):

𝑟 =
𝑝(𝜃0|𝑦)/𝐽𝑡(𝜃∗|𝜃(𝑡−1))

𝑝(𝜃(𝑡−1)|𝑦)/𝐽𝑡(𝜃(𝑡−1)|𝜃∗)
 (4)

Step 4.4. We accept θ * as θ (t) with the option min (r, 1). If θ * is not accepted, then

θ (t) = θ (t-1).

Step 5. Check a stopping criterion and if it fails set k = k + 1 and go back to Step 1.

Genetic algorithm

Genetic algorithms are adaptive and can be used to solve search and optimization tasks.

This algorithm was created based on genetic processes occurring in nature. Many times,

the natural population evolves based on the principle of natural selection and the policy

of the survival of the most influential individual, described for the first time in Charles

Darwin's Book of Kinds. By mimicking this process, genetic algorithms can adapt to

real-life situations and find their solutions if the algorithm is properly designed (Wang,

2017).

Before starting to solve the problem, it is necessary to find the right coding (or

representation) of the problem to be addressed. There is also a need for a verification

function that allows us to assess the quality of certain individuals (or just solutions) to

make it possible for two individuals to compare with each other. During the

implementation of the realization of the genetic algorithm, two parents who cross each

other to obtain the offspring are constantly selected. Let the task solutions are presented

in parameter sets. Individuals in one iteration (once) are selected and crossed and thus

produce offspring within the next population (iteration). Parents are randomly selected

from the population according to a scheme that favors better individuals. When two

parents are chosen, their chromosomes are combined using crossover and mutation

procedures. The mutation, which is a random chance of genes, is used to maintain

population diversity (Felinskas et al., 2006).

GA algorithm for discrete global optimization can be described as follows.

 Study of Convergence in Metaheuristics Algorithms 439

Step 0. Randomly generate chromosome solution and calculate their goal function

meaning.

Step 1. Evaluate each chromosome solution and mark the best solution. A

chromosome is encoding as one array, where can be value be 0 or 1. The 0 value means

that the job is taken another machine and 1 represents that the job is taken this machine.

Step 2. Randomly select another chromosome which will do a crossover method,

with chromosome which gives the best solution. Crossover operation we choose to use

2-point crossover method where is randomly selected crossover points. This method is

illustrated in Figure 1.

Figure 1. 2-point crossover example.

Step 3. Mutation method. This method is used to mutate best solution chromosome.

Randomly are changed the best solution chromosome cells from 0 to 50%.

Step 4. Attributed new solutions to chromosomes and calculate theirs new goal

function meaning.

Step 5. Check a stopping criterion and if it fails to go back to Step 1. (Weise, 2011).

Artificial ant colonies algorithm

Ant colonies algorithm is based on seeking food. This algorithm is based on real ants

observation. Then ants start looking for food they are looking it randomly, but then a

portion of food is found ants leave strong pheromone smell to other ants, that a food

resource find quickly, and a journey distance be shorter. The pheromone on the shorter

path will, therefore, be more strongly reinforced and will eventually become the

preferred route for the stream of ants. (Weise, 2011) and (Bianchi et al., 2002).

ACA algorithm for discrete global optimization can be described as follows.

Step 0. All ants get the same primary solution and goal function meaning.

Step 1. If it is the first iteration, we randomly generate a solution for ants and

calculate their goal function meaning. Otherwise the solution of each individual is

chosen according to the probability attributed to the edges of the matrix G (i, j), but also

Parent A 1 1 0 0 1 0 1 1

Parent B 1 1 1 1 0 1 1 0

Child A 1 1 1 1 0 1 1 1

Child B 1 1 0 0 1 0 1 0

440 Kavaliauskas and Sakalauskas

the heuristical distance corresponding to the edge (i, j) is used for the decision, here the

probability of the transition from i to j to the k
th

 ant at time t is defined (Simonavičius,

2007),

𝑃𝑘
𝑖,𝑗 = {

[𝜏𝑖,𝑗(𝑡)]𝛼[𝜂𝑖,𝑗]𝛽

∑[𝜏𝑖,𝑘(𝑡)]𝛼[𝜂𝑖,𝑘]𝛽 𝑖𝑓(𝑖, 𝑗) ∉ 𝑡𝑎𝑏𝑢𝑘

𝑘 ∈ allowed𝑘

0

 (5)

where is the set of prohibited transitions, o. The parameters α and β are determined by

the expert, evaluating the probability and the influence of the distances on the decision.

Once set, only distance information will be used, and vice versa.

Step 2. Evaluation all ants new goal function meaning.

Step 3. Updating each ant local pheromone matrix by the formula (Bianchi et al.,

2002):

𝛥𝜏𝑘
𝑖,𝑗 = {

𝑄

𝐿𝑘
𝑖𝑓 𝑘 𝑎𝑛𝑡 𝑔𝑜𝑒𝑠 (𝑖, 𝑗)𝑒𝑑𝑔𝑒

0
 (6)

where is the k
th

 individual path length between time t and t + n, Q is a positive constant.

Thus, the probability of Q / L is recalculated in each iteration.

Step 4. Recalculated global pheromone matrix. The probability of the individual left

behind is calculated according to the principle of belated renewal. It is expressed by

function (Weise, 2011):

𝜏𝑖,𝑗(𝑡 + 𝑛) = 𝜌 ⋅ 𝜏𝑖,𝑗 + 𝛥𝜏𝑖,𝑗 (7)

where ρ is the coefficient chosen to represent the loss of probability (pheromone

evaporation factor) by the edge (i, j) between the time t and t + n. In order for the

probabilities not to grow too fast, it should be valid. All probabilities obtained by m ant

are calculated as follows (Simonavičius, 2007):

𝛥𝜏𝑖,𝑗 = (1 − 𝑝) ∗ 𝜏𝑖,𝑗 + ∑ 𝛥𝜏𝑘
𝑖,𝑗

𝑚
𝑘=1 (8)

Step 5. Check a stopping criterion and if it fails go back to Step 1.

Computer modeling

We made some computational research, computer modeling of efficiency of this

algorithm. In global optimization problems, when we used some optimization

algorithms, we need to test the reliability and efficiency of these algorithms. We can use

some special testing functions, well known in the literature. Some of these functions

have one or more global minimum; some of them have global and local minimums. With

 Study of Convergence in Metaheuristics Algorithms 441

the help of these functions, we can ensure, that our methods are efficient enough, we can

test and prevent algorithms from being trapped in a local minimum, we can watch the

speed and accuracy of convergence and other parameters.

Formulation of the Problem

We have two processors, which share jobs. There is a 100-job list. Each job duration is

randomly generated by Gaussian distribution. If the first processor takes a job from the

list, then the second processor can no longer take the same job. All jobs must be assigned

to processors so that theirs all duration time is shorter. It should be mentioned that the

processors are of equal capacity. All testing algorithms repeated calculations 2000 times.

Results

In this section, we will compare algorithms by their goal function meaning, convergence

speed and showing similarity to Weibull cumulative distribution.

Figure 2. Goal functions average distance dependencies.

The Figure 2 shows, that SA algorithm goal function is approaching the optimal solution

in the first iterations compering with other algorithms. Between 1 and 3 iterations we

see dramatically goal function alteration. Other iterations only reduce the e change to the

optimal solution.

The Figure 3 shows that algorithms convergence speed is directly proportional to the

number of iterations. This algorithm is on a logarithmic scale, that helps more clearly to

see algorithms convergence speed in a whole calculation life cycle. According to this

graph we can see that ACA algorithm was stuck in local optimum, although this

algorithm gave good results according to Figure 2 graph.

-20

0

20

40

60

0 5 10 15 20

G
o

al
 f

u
n

ct
io

n
 v

al
u

e

Iteration

Goal functions average distance dependencies

GA ACA SA

442 Kavaliauskas and Sakalauskas

Figure 3. Goal functions average distance dependencies.

The Figure 3 shows that algorithms convergence speed is directly proportional to the

number of iterations. This algorithm is on a logarithmic scale, that helps more clearly to

see algorithms convergence speed in a whole calculation life cycle. According to this

graph we can see that ACA algorithm was stuck in local optimum, although this

algorithm gave good results according to Figure 2 graph.

Figure 4. Weibull cumulative distribution and goal function distribution.

0,0001

0,001

0,01

0,1

1

10

100

1 10 100 1000

G
o

al
 f

u
n

ct
io

n
 v

al
u

e

Iteration

Goal functions average distance convergance
speed

GA ACA SA

-0,2

0

0,2

0,4

0,6

0,8

1

0 10 20 30 40 50

Weibull cumulative distribution and goal
function distribution

GA 1 iteration GA Weibull 1 iteration

ACA 1 iteration ACA Weibull 1 iteration

SA 1 iteration SA Weibull 1 iteration

 Study of Convergence in Metaheuristics Algorithms 443

The Figure 4 shows that algorithms goal functions are very similar to Weibull

cumulative distribution, notably GA algorithm. This indicates that we can use Weibull

distribution rules on our solutions. In other iterations, all algorithms goal function

distributions are more similar with Weibull cumulative distributions. In this paper, we

show first iteration results.

Conclusions

Since the use of metaheuristics algorithms for the optimal solution requires a lot of

computer time and operations, the main objective functional improvement is achieved

already during the first iterations of the operation. Therefore, it is advisable to use

heuristic algorithms with a small iterative step. Our develop SA algorithm is more

effective in first iteration compering with other algorithms in this paper. This shows the

algorithm's ability to solve more complex problems.

The efficiency of the algorithm depends on the selection of its parameters. Therefore,

the selection and application of its settings for the class of tasks to be addressed must be

implemented. ACA algorithm letting randomly selecting α and β parameters could be a

possibility that this algorithm shows the worse solution in this paper.

Furthermore, our developed metaheuristic algorithm efficiency research

methodology for continuous problems is applicable to discrete issues. This methodology

let lets you investigate algorithms convergence speed and efficiency, thus

complementing standard statistical methods.

References

Bianchi, L., Gambardella, L.M., Dorigo, M. (2002). An ant colony optimization approach to the

probabilistic traveling salesman problem. PPSN-VII. Seventh International Conference on

Parallel Problem Solving from Nature. Lecture Notes in Computer Science, Springer Verlag.

Kirkpatrick, S., Gelatt, C.D., Vecchi, M.P. (1983). Optimization by Simulated Annealing. Science,

New Series. Vol. 220, No. 4598, 671-680.

Sakalauskas, L., Felinskas, G. (2006). Optimization of resource constrained project schedules by

genetic algorithm based on the job priority list. Information technology and control. Vol 3,

No 4, 412-418, available at:
ttp://itc.ktu.lt/index.php/ITC/article/view/11813/6480

Simonavičius, J. (2007). Gamybinių tvarkaraščių sudarymo uždavinio algoritmai ir analizė. Master

thesis, University of Kaunas technology, Lithuania, available at:
http://talpykla.elaba.lt/elaba-fedora/objects/elaba:1855149/

datastreams/ATTACHMENT_1855152/content

Wang, J. (2017). Optimization and Simulation of Resource Constrained Scheduling Problem

Using Genetic Algorithm. Science journal of business and management, Vol 4, No 6, 229-

237, available at http://article.sciencepublishinggroup.com/pdf/

10.11648.j.sjbm.20160406.18.pdf

Weise, T. (2011). Global Optimization Algorithms –Theory and Application, 3rd ed., available at
http://www.it-weise.de/projects/bookNew.pdf

Received September 8, 2019, accepted September 25, 2019

http://www.it-weise.de/projects/bookNew.pdf

