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Abstract. Artificial intelligence (AI) system purpose is to help humans solve problems. This 

branch of science became famous less than a hundred years ago. Since then, it has gained 

momentum and scale. This area is currently associated with many methodologies, some of which 

are called metaheuristics algorithms. In this work, we will look at several metaheuristics 

algorithms. Comparison of algorithm solutions will be performed. We compare the accuracy of the 

results, the speed of the solution, and other parameters. They will solve one of the classic NP 

problems. This problem is named a scheduling problem. This paper presents an approach for 

enhancement of this balance in single solution metaheuristics applied to solve two processors 

scheduling problem generated during metaheuristic search. We compare Simulated Annealing 

(SA) algorithm with our develop modification amongst to other well-known metaheuristics like a 

genetic algorithm (GA) and artificial ant colonies algorithm (ACA) taken from the source of 

literature.  
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Introduction 
 

Many discrete problems are NP-hard in nature and therefore are possible to solve only 

by exponential or higher complexity algorithms. To this end, the attention is drawn on 

heuristic or metaheuristic methods to allow us to address the discrete global optimization 

problems effectively. By contrast, the variables in discrete optimization problems are 

allowed to take on any values permitted by the constraints. 

A successful metaheuristic should provide a balance between the exploration 

(diversification) and the exploitation (intensification) of the search space. An 

investigation is needed to identify parts of the search space with high-quality solutions to 

intensify the search in some promising areas of the accumulated search experience. Of 

course, enhancement of a balance between exploration and exploitation is a challenging 

task for improving the efficiency of metaheuristics. This paper presents an approach for 

enhancement of this balance in single solution metaheuristics applied to solve discrete 

problems, varying the neighborhood of solution generated during metaheuristic search. 

The modification of the well-known metaheuristics of genetic algorithm (GA), artificial 

ant colonies algorithm (ACA) and Simulated Annealing (SA) algorithm with 

modification. These algorithms are widely applied for solving various discrete global 

optimization problems. 
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Simulated Annealing algorithm 
 
Simulated annealing is a global search and optimization method, that is based on the 

principles of thermodynamics, and from the statistical standpoint, it ensures achieving 

global optimum if temperature decrease rate (temperature schedule) is chosen properly 

(Gelatt et al., 1983). This method has extensive functionality in both continuous and 

discrete regions, simultaneously. SA choose a point with a density function g(x) around 

current state x*. Then, the cost of new state is calculated by cost function, and at last, an 

acceptance function h(x) decides to accept this state or not. It is clear that if the new rule 

has lower cost, it has a higher chance to be taken. At the beginning of the search, range 

of possible new points is extensive, and the possibility of acceptance and denial is almost 

equal due to high temperature. With decrease in temperature, a variety of new state will 

be decreased, which leads to an increase in resolution. 

In the next part, we will explain how SA works. Our adapted SA algorithm for 

discrete global optimization can be described as follows. 

 

Step 0. Let x0 ε X be a given starting point, z0 = {x0} and k = 0;  

 

Step 1. We calculate the temperature parameter T at iteration k on which the number 

of elementary transformation operations depends. We constructed special neighborhood 

depth (ρk) generating algorithm, based on generation of stable Pareto values: 

 

Step 1. 1. Set initial 𝑖: = 1 and 𝑇: = 0. 

 

Step 1. 2. Generate U1 and U2, uniformly distributed in (Gelatt et al., 1983), and 

(Weise, 2011). Then calculate: 

 

Z ∶= (
𝑠𝑖𝑛((𝛼−1)⋅𝑈1⋅𝜋)

− 𝑙𝑛(𝑈2)
)

1−𝑎

𝑎
⋅

⋅𝑠𝑖𝑛(𝛼⋅𝑈1⋅𝜋)

(𝑐𝑜𝑠(𝛼⋅
𝜋

2
)⋅𝑠𝑖𝑛(𝑈1⋅𝜋))

1
𝛼

            (1) 

   

T := T + Z            (2) 

 

where the value of parameter α is selectable between 0 and 1. In the following 

calculation value of this parameter was used as 0.85. 

 

Step 1. 3. Calculating a ρk value: 

 

 𝜌𝑘 = {
𝑖, 𝑇 ≥  𝑇0 

𝑖 + 1, 𝑇 <  𝑇0
 (3) 

 

here neighborhood depth (ρk) value is monotonically depends on temperature and 

parameter i belongs to the number of iterations. The parameter T0 has a predefined value 

that is half the number of possible allowable elementary transforms. In terms of 

assigning a task to one executive or another, that would be half the number of tasks 

available. (Gelatt et al., 1983). 
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Step 2.  A new solution is being developed by carrying out elementary 

rearrangements up to the permitted temperature by volume to the solution set In the 

following calculations as simply rearrangements were used randomly shift and swap 

operation in the solution set. 

 

Step 3. We calculate the objective function with new meanings of values. 

 

Step 4. The resulting value is checked using the Metropolis-Hastings (MH) criterion 

algorithm, which is expressed in: 

 

Step 4.1. Select the initial value θ; 

 

Step 4.2. Iteration t proposes to go to the value of θ * with the probability  

Jt (θ * | θ (t-1)); 

 

Step 4.3. Calculate the acceptable ratio (opportunity) (Weise, 2011): 

 

𝑟 =
𝑝(𝜃0|𝑦)/𝐽𝑡(𝜃∗|𝜃(𝑡−1))

𝑝(𝜃(𝑡−1)|𝑦)/𝐽𝑡(𝜃(𝑡−1)|𝜃∗)
                                                   (4)  

 

Step 4.4. We accept θ * as θ (t) with the option min (r, 1). If θ * is not accepted, then 

θ (t) = θ (t-1). 

 

Step 5. Check a stopping criterion and if it fails set k = k + 1 and go back to Step 1. 

 

Genetic algorithm 
 

Genetic algorithms are adaptive and can be used to solve search and optimization tasks. 

This algorithm was created based on genetic processes occurring in nature. Many times, 

the natural population evolves based on the principle of natural selection and the policy 

of the survival of the most influential individual, described for the first time in Charles 

Darwin's Book of Kinds. By mimicking this process, genetic algorithms can adapt to 

real-life situations and find their solutions if the algorithm is properly designed (Wang, 

2017). 

Before starting to solve the problem, it is necessary to find the right coding (or 

representation) of the problem to be addressed. There is also a need for a verification 

function that allows us to assess the quality of certain individuals (or just solutions) to 

make it possible for two individuals to compare with each other. During the 

implementation of the realization of the genetic algorithm, two parents who cross each 

other to obtain the offspring are constantly selected. Let the task solutions are presented 

in parameter sets. Individuals in one iteration (once) are selected and crossed and thus 

produce offspring within the next population (iteration). Parents are randomly selected 

from the population according to a scheme that favors better individuals. When two 

parents are chosen, their chromosomes are combined using crossover and mutation 

procedures. The mutation, which is a random chance of genes, is used to maintain 

population diversity (Felinskas et al., 2006). 

GA algorithm for discrete global optimization can be described as follows. 
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Step 0. Randomly generate chromosome solution and calculate their goal function 

meaning. 

 

Step 1. Evaluate each chromosome solution and mark the best solution. A 

chromosome is encoding as one array, where can be value be 0 or 1. The 0 value means 

that the job is taken another machine and 1 represents that the job is taken this machine. 

 

Step 2. Randomly select another chromosome which will do a crossover method, 

with chromosome which gives the best solution. Crossover operation we choose to use 

2-point crossover method where is randomly selected crossover points. This method is 

illustrated in Figure 1. 

 
 

Figure 1.  2-point crossover example.  

Step 3. Mutation method. This method is used to mutate best solution chromosome. 

Randomly are changed the best solution chromosome cells from 0 to 50%. 

  

Step 4. Attributed new solutions to chromosomes and calculate theirs new goal 

function meaning. 

 

Step 5. Check a stopping criterion and if it fails to go back to Step 1. (Weise, 2011). 

 

 

Artificial ant colonies algorithm 
 

Ant colonies algorithm is based on seeking food. This algorithm is based on real ants 

observation. Then ants start looking for food they are looking it randomly, but then a 

portion of food is found ants leave strong pheromone smell to other ants, that a food 

resource find quickly, and a journey distance be shorter. The pheromone on the shorter 

path will, therefore, be more strongly reinforced and will eventually become the 

preferred route for the stream of ants. (Weise, 2011) and (Bianchi et al., 2002). 

ACA algorithm for discrete global optimization can be described as follows. 

 

Step 0. All ants get the same primary solution and goal function meaning. 

 

Step 1. If it is the first iteration, we randomly generate a solution for ants and 

calculate their goal function meaning. Otherwise the solution of each individual is 

chosen according to the probability attributed to the edges of the matrix G (i, j), but also 

Parent A 1 1 0 0 1 0 1 1

Parent B 1 1 1 1 0 1 1 0

Child A 1 1 1 1 0 1 1 1

Child B 1 1 0 0 1 0 1 0
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the heuristical distance corresponding to the edge (i, j) is used for the decision, here the 

probability of the transition from i to j to the k
th

 ant at time t is defined (Simonavičius, 

2007), 

 

𝑃𝑘
𝑖,𝑗 = {

[𝜏𝑖,𝑗(𝑡)]𝛼[𝜂𝑖,𝑗]𝛽

∑[𝜏𝑖,𝑘(𝑡)]𝛼[𝜂𝑖,𝑘]𝛽 𝑖𝑓(𝑖, 𝑗) ∉ 𝑡𝑎𝑏𝑢𝑘

𝑘 ∈ allowed𝑘

0

            (5)  

 

where is the set of prohibited transitions, o. The parameters α and β are determined by 

the expert, evaluating the probability and the influence of the distances on the decision. 

Once set, only distance information will be used, and vice versa. 

 

Step 2. Evaluation all ants new goal function meaning.  

 

Step 3. Updating each ant local pheromone matrix by the formula (Bianchi et al., 

2002): 

 

𝛥𝜏𝑘
𝑖,𝑗 = {

𝑄

𝐿𝑘
𝑖𝑓 𝑘 𝑎𝑛𝑡 𝑔𝑜𝑒𝑠 (𝑖, 𝑗)𝑒𝑑𝑔𝑒

0
                   (6)  

 

where is the k
th

 individual path length between time t and t + n, Q is a positive constant. 

Thus, the probability of Q / L is recalculated in each iteration. 

 

Step 4.  Recalculated global pheromone matrix. The probability of the individual left 

behind is calculated according to the principle of belated renewal. It is expressed by 

function (Weise, 2011): 

 

𝜏𝑖,𝑗(𝑡 + 𝑛) = 𝜌 ⋅ 𝜏𝑖,𝑗 + 𝛥𝜏𝑖,𝑗                                            (7)  

 

where ρ is the coefficient chosen to represent the loss of probability (pheromone 

evaporation factor) by the edge (i, j) between the time t and t + n. In order for the 

probabilities not to grow too fast, it should be valid. All probabilities obtained by m ant 

are calculated as follows (Simonavičius, 2007): 

 

𝛥𝜏𝑖,𝑗 = (1 − 𝑝) ∗ 𝜏𝑖,𝑗 + ∑ 𝛥𝜏𝑘
𝑖,𝑗

𝑚
𝑘=1                          (8)  

 

Step 5. Check a stopping criterion and if it fails go back to Step 1. 

 

Computer modeling 
 

We made some computational research, computer modeling of efficiency of this 

algorithm. In global optimization problems, when we used some optimization 

algorithms, we need to test the reliability and efficiency of these algorithms. We can use 

some special testing functions, well known in the literature. Some of these functions 

have one or more global minimum; some of them have global and local minimums. With 
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the help of these functions, we can ensure, that our methods are efficient enough, we can 

test and prevent algorithms from being trapped in a local minimum, we can watch the 

speed and accuracy of convergence and other parameters. 

 

Formulation of the Problem 
 

We have two processors, which share jobs. There is a 100-job list. Each job duration is 

randomly generated by Gaussian distribution. If the first processor takes a job from the 

list, then the second processor can no longer take the same job. All jobs must be assigned 

to processors so that theirs all duration time is shorter. It should be mentioned that the 

processors are of equal capacity. All testing algorithms repeated calculations 2000 times.  

 

Results 
 
In this section, we will compare algorithms by their goal function meaning, convergence 

speed and showing similarity to Weibull cumulative distribution. 

 

 
 

Figure 2. Goal functions average distance dependencies. 

The Figure 2 shows, that SA algorithm goal function is approaching the optimal solution 

in the first iterations compering with other algorithms.  Between 1 and 3 iterations we 

see dramatically goal function alteration. Other iterations only reduce the e change to the 

optimal solution. 

 

The Figure 3 shows that algorithms convergence speed is directly proportional to the 

number of iterations. This algorithm is on a logarithmic scale, that helps more clearly to 

see algorithms convergence speed in a whole calculation life cycle. According to this 

graph we can see that ACA algorithm was stuck in local optimum, although this 

algorithm gave good results according to Figure 2 graph.  
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Figure 3. Goal functions average distance dependencies. 

The Figure 3 shows that algorithms convergence speed is directly proportional to the 

number of iterations. This algorithm is on a logarithmic scale, that helps more clearly to 

see algorithms convergence speed in a whole calculation life cycle. According to this 

graph we can see that ACA algorithm was stuck in local optimum, although this 

algorithm gave good results according to Figure 2 graph.  

 

 

 
 

Figure 4. Weibull cumulative distribution and goal function distribution. 

0,0001

0,001

0,01

0,1

1

10

100

1 10 100 1000

G
o

al
 f

u
n

ct
io

n
 v

al
u

e
 

Iteration 

Goal functions average distance convergance 
speed 

GA ACA SA

-0,2

0

0,2

0,4

0,6

0,8

1

0 10 20 30 40 50

Weibull cumulative distribution and goal 
function distribution 

GA 1 iteration GA Weibull 1 iteration

ACA 1 iteration ACA Weibull 1 iteration

SA 1 iteration SA Weibull 1 iteration



                                         Study of Convergence in Metaheuristics Algorithms 443 

 

 

The Figure 4 shows that algorithms goal functions are very similar to Weibull 

cumulative distribution, notably GA algorithm. This indicates that we can use Weibull 

distribution rules on our solutions.  In other iterations, all algorithms goal function 

distributions are more similar with Weibull cumulative distributions.  In this paper, we 

show first iteration results. 

  

Conclusions 
 

Since the use of metaheuristics algorithms for the optimal solution requires a lot of 

computer time and operations, the main objective functional improvement is achieved 

already during the first iterations of the operation. Therefore, it is advisable to use 

heuristic algorithms with a small iterative step. Our develop SA algorithm is more 

effective in first iteration compering with other algorithms in this paper. This shows the 

algorithm's ability to solve more complex problems. 

The efficiency of the algorithm depends on the selection of its parameters. Therefore, 

the selection and application of its settings for the class of tasks to be addressed must be 

implemented. ACA algorithm letting randomly selecting α and β parameters could be a 

possibility that this algorithm shows the worse solution in this paper. 

Furthermore, our developed metaheuristic algorithm efficiency research 

methodology for continuous problems is applicable to discrete issues. This methodology 

let lets you investigate algorithms convergence speed and efficiency, thus 

complementing standard statistical methods. 
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