
Baltic J. Modern Computing, Vol. 7 (2019), No. 4, 454-474
https://doi.org/10.22364/bjmc.2019.7.4.01

Complexity Metrics for Sassy Cascading Style

Sheets

John Gichuki NDIA
1,2

, Geoffrey Muchiri MUKETHA
2
,

Kelvin Kabeti OMIENO
3

1 School of Computing and Informatics, Masinde Muliro University of Science and Technology,

Kenya
2 School of Computing and Information Technology, Murang’a University of Technology, Kenya
3 School of Computing and Information Technology, Kaimosi Friends University College, Kenya

ndia.john@mut.ac.ke, gmuchiri@mut.ac.ke, komieno@kafuco.ac.ke

Abstract. Many front-end web developers are nowadays increasingly using sassy cascading

stylesheets (SCSS) instead of the regular cascading style sheets (CSS). Despite its increased

demand, SCSS has inherent complexity which arises from its features such as the use of nesting,

inheritance, variables, operators, and functions. In addition, SCSS complexity, like all other

software, continually increases with age. High complexity is undesirable because it leads to

software that is difficult to understand, modify and test. Although there has been some metrics

proposed to measure stylesheets complexity, these were defined in the context of regular CSS, and

cannot be used to measure SCSS due to differences in their syntax. This paper proposes four

metrics for measuring the complexity of SCSS code. The metrics have been used to calculate the

complexity of three code snippets and three real-world projects and were found to be intuitional.

The metrics were also evaluated using the Kaner framework and satisfied all the evaluation

questions, indicating that they are sufficiently practical as required in the industry. In addition, the

metrics were evaluated using Weyuker’s properties, and results show that all the four metrics

satisfied seven out of the nine properties, implying that they are theoretically sound.

Keywords: SCSS, rule blocks, complexity, complexity metrics, theoretical validation

1. Introduction

Cascading style sheets (CSS) language is a fundamental W3C standard that handles the

presentation of the web documents written in Hypertext markup language (HTML),

Extensible HTML (XHTML), and any Extensible Markup Language (XML) document

to bring about aesthetically pleasing and user-friendly interfaces (Adewumi et al., 2012).

In recent years, researchers and the industry have adopted the use of CSS to the extent

that it has now become an integral part of web-based applications that separates structure

from presentation (Adewumi et al., 2012; Geneves et al.,2012; Punt et al., 2016).

However, to enable faster and maintainable development of CSS code, developers are

shifting to the use of CSS pre-processors such as Sass, Less, Stylus, CSS-crush, Myth

and Rework. CSS pre-processor is a program that processes or converts pre-processors

code into CSS. According to Mazinanian and Tsantalis (2016), 54% of web developers

https://doi.org/10.22364/bjmc.2019.7.4.01

 Complexity Metrics for Sassy Cascading Style Sheets 455

are now using CSS preprocessors and among these preprocessors, 92% of these

developers prefer to use either SASS or LESS.

SASS pre-processor will be the focus of this study because it is increasingly being

adopted by developers when compared to LESS pre-processor. Besides, governments

such as the United States have recommended its use because it provides resources such

as frameworks, libraries, tutorials and a comprehensive style guide as support

(Mazinanian and Tsantalis, 2016). SASS pre-processor supports two syntaxes, Sassy

CSS (SCSS) which uses the .scss extension and indented syntax which uses the .sass

extension. SCSS is the newer of the two syntaxes and the most popular among front web

developers for the following reasons: 1) It is a superset of CSS making migration to

SCSS a lot easier, 2)It is easy to use the existing stylesheets and incorporate SASS

features, 3) It is also more expressive meaning its more logically grouped, for example,

one can compress several lines of codes in SASS into just fewer lines in SCSS

(Cederholm, 2013). Fig. 1 shows a family tree of SASS pre-processor.

Fig. 1. SASS pre-processor syntaxes

SCSS has inherent complexity, due to the continuous growth of code size from

features such as nesting, mixins, variables, inheritance, functions, operators, and control

directives that are otherwise lacking in regular CSS. In addition, Web developers take a

substantial amount of time to learn the SCSS language and about 46% of front web

developers still prefer the use of regular CSS because they feel it has simple syntax

(Mazinanian and Tsantalis, 2016). Software complexity leads to less reliable,

understandable and maintainable software (Mesbah and Mirshokraie, 2012; Ghosheh et

al., 2008; Muketha et al., 2010; Adewumi et al., 2012; Ogheneovo, 2014). The use of

software complexity metrics has been recognized in software engineering as a way of

controlling the complexity of software. According to Muketha et al., (2010),

Parthasarathy and Anbazhagan (2006), software metrics inform on the success and

failure level of software and the areas to improve the software.

In the style sheets domain, there is very little research regarding their complexity,

mainly because it’s relatively a new area (Punt et al., 2016; Mesbah and Mirshokraie,

2012). The only software metrics proposed in style sheets domain are the six metrics

defined by Adewumi et al., (2012), to measure the complexity of regular CSS. Although

these metrics are promising, they cannot be used to measure SCSS complexity because

of its unique features. Therefore, there is a need to define complexity metrics for SCSS.

SASS PRE-PROCESSOR

SASS SCSS

456 Ndia et al.

2. The Structure and Complexity of SCSS

This section presents a detailed description of the structural features of SCSS and then

attempts to relate these to SCSS complexity.

2.1. SCSS structure

The basic building component of an SCSS is a rule block. A rule block is made up of a

selector and one or more attributes (Adewumi et al., 2012). The selector points to the

HTML element to be styled while attributes specify the style on the element. An

attribute is also known as the property name and can have one or more values. SCSS has

other blocks such as mixin blocks (comprising of a @mixin directive with opening and

closing braces), function blocks (comprising of @function directive with opening and

closing braces), control directives block (comprising of control directive i.e. @if,

@each, @for, @elseif with opening and closing braces), and media blocks (it comprises

of @media with opening and closing braces). In this paper, all the various kind of blocks

are referred to as SCSS blocks. An SCSS block is defined as any block that consists of a

selector or @rule directive, opening brace, set of attributes and/or directives and a

closing brace.

Sassy CSS is a style sheet language whose aim is to determine how the web pages

are presented. In contrast, the aim of conventional programming languages such as Java,

C++, etc. is to automate processes. Basically, SCSS is used to describe data while

regular programming languages modify data. There are several differences between

SCSS and regular programming languages. Table 1 presents the differences between

SCSS and other structured and object-oriented software.

Table 1. Comparison between software programs and SCSS programs

Criteria Software program SCSS code

Modularized by Modules/classes SCSS block e.g. rule block, function

directive block, mixin block, etc.

Coordinating

module

Main program, class, module or

method to coordinate all others

None

Program

statements

Simple statements e.g.

assignment.

Attributes and rule directives.

Control-flow

statements

Sequence, branch, loop, and calls Branch, loops, and calls

Data types Variables/constants Variables

Data definition Each language defines its own

data types

SCSS relies on SASS Pre-processor

data types

Programming

scope

Programs for performing

calculations e.g. finding the sum

of two numbers

Programs for formatting the

presentation of web pages. e.g.

assigning font size 12 to a paragraph

A simple alert rule block is shown in Fig. 2 with three regular attributes, i.e. padding,

font-size, and text-align. Padding has been used to generate a space of 15px around the

content of an element while font-size sets the size of text as 1.2em. Finally, text-align

centers the content of the element where the alert class is implemented.

 Complexity Metrics for Sassy Cascading Style Sheets 457

. al er t {

paddi ng: 15px ;

f ont - s i ze: 1. 2em;

t ex t - al i gn: cent er ;
}

Selector and opening brace

Three attributes each

ending with a semicolon

Closing brace

Fig. 2. An alert rule block

An illustration of multiple blocks is shown in Fig. 3. The figure has one mixin block

which can be called in various places of the code. It also has five rule blocks where the

three of them are nested. Fig. 3 also demonstrates the use of variables and selector

inheritance.

The formal definition of an SCSS block SCSSB is

SCSSB = <A, D>

An SCSS block (SCSSB) is a 2-tuple <A, D>, where A is the set of attributes, and D

is the set of directives such as mixin directives, control directive, function directive, and

media directives.

2.2. SCSS Complexity

Several researchers have defined software complexity as the extent to which the software

is difficult to understand (Harrison et al., 1999; Muketha et al., 2010). In order to

manage the complexity of software, studies have shown that the factors responsible for it

should be identified before defining metrics. The complexity determinant factors in

software are size and length of the software (Muketha et al., 2010; Adewumi et al., 2012;

Misra and Cafer, 2012; Khan et al., 2016), control flows (McCabe, 1976; Cardoso, 2007;

Muketha et al., 2010; Misra and Cafer, 2012), use of operators (Halstead, 1977; Misra

and Cafer, 2012), use of function calls (Shao and Wang, 2003; Misra and Cafer, 2012),

use of variables (Misra and Cafer, 2012; Kushwaha and Misra, 2006), nesting

(Piwowarski, 1982; Li, 1987; Chhillar and Bhasin, 2011; Frain,2013), inheritance

(Chawla and Nath, 2013; Gill and Sikka, 2011; Chung and Lee, 1992; Misra et al.,

2011), and coupling (Stevens et al., 1974; Chidamber and Kemerer,1994; Li and Henry,

1993; Abreu et al., 1996).

In stylesheets domain, the factors that contribute to its complexity are the size of

CSS, rule block structures varieties, rule block reuse, cohesion and number of attributes

(Adewumi et al., 2012). However, these factors are only limited to regular CSS and it’s

not indicated which process was used to identify them.

In the software engineering field, there are several software metrics proposed to

measure and control software complexity. In the domain of stylesheets, there are few

complexity metrics defined In Adewumi et al. (2012), proposed some metrics for regular

CSS which influenced this study, for example, Rule length (RL) and Number of Rule

Blocks (NORB), which are an adaptation of the Lines of Code (LOC). However, these

metrics based on their definition, cannot be directly applied to SCSS code. RL considers

a rule to be any of the following; a selector plus an opening brace, attributes that end

with a semicolon, and a closing brace. This leaves out other rules in SCSS which are

458 Ndia et al.

executable such as @extend, @include and declaration of variables. The other metric

which is NORB doesn’t cover other blocks available in SCSS such as mixin block,

function blocks and control directive block. Therefore, these existing metrics are limited

because they fail to show the actual size of the SCSS code. This implies that the metrics

don’t give enough information the SCSS designers require, for example when to

redesign a large SCSS block.

Fig. 3. SCSS code with multiple blocks

$color-accent: #9c3;

.alertA {

padding: 15px;

font-size: 1.2em;

text-align: center;

background: $color-accent;

@include infobox;

}

.alertB{

@extend .alertA;

background: #6b9;

}

@mixin infobox {

width: 200px;

border: 1px solid red;

color: red;

}

header{

width: 90%;

position: absolute;

left: 5%;

top: 45px;

height: 97px;

.countries-list{

position: absolute;

left: -55px;

top: 100px;

@include infobox;

li{

display: block;

margin-bottom: 5px;

}

}

}

Mixin block declaration

Use of variable in the attribute

Variable declaration

Use of mixin in the code

Inheritance of .alertA selector

Nesting of SCSS rule blocks

 Complexity Metrics for Sassy Cascading Style Sheets 459

The Number of attributes Defined per Rule Block (NADRB) metric informed this

paper and its essence is to compute the complexity of a rule block by counting the

number of all attributes and divide by the number of rule blocks. This implies that the

higher the average number of attributes per rule block, the more complex the CSS code.

This metric is limited because it doesn’t, for example, consider the use of control flows

and function calls in rule blocks, meaning the SCSS designers can’t tell when to redesign

a very complex SCSS block.

The class inheritance factor (CIF) metric motivated the definition of a new metric for

inheritance in SCSS code. The CIF metric computes the ratio of the sum of all ancestors

for all classes divided by the maximum possible inheritance for the system. The

inheritance is strictly one-way, meaning if class X extends class Y, then class Y cannot

extend class X. Therefore, the maximum inheritance level for a system is 0 + 1 +……+

(n-1) (Mayer and Hall, 1999). The CIF metric is promising in comparison to method

inheritance factor (MIF) and attribute inheritance factor (AIF) because in OOP it’s the

classes that are extended and not methods or attributes. However, the usefulness of CIF

is yet to be established because it has not been validated.

The metric defined for SCSS coupling in this paper extends the coupling between

objects (CBO) metric which is used in the object-oriented domain. CBO is a count of the

number of classes that are coupled to a certain class. This metric is really promising, but

it requires some adaptation so that it can be used for SCSS measurement.

3. Metrics Definition

The proposed metrics are derived from existing CSS metrics and other software metrics

through the process of modification. This study followed the Entity-Attribute-Metric

model in the definition of metrics for SCSS (Fenton and Pfleeger, 1997). In this paper

the interesting attributes identified to be measured from SCSS program include;

i. Cognitive complexity of SCSS blocks

ii. Nesting level for SCSS code

iii. Selector Inheritance level for SCSS code

iv. Coupling level of SCSS code

The metrics identified to measure each of the attributes are;

Average Block Cognitive Complexity for SCSS (ABCCSCSS)

The metric ABCCSCSS extends Number of Attributes Defined per Rule Block

(NADRB) and is used to compute the complexity of a rule block in regular CSS.

NADRB metric calculates complexity by determining the average number of attributes

defined in the rule blocks. The proposed ABCCSCSS metric will consider other factors

beyond the number of attributes, such as @rule and directives, operators, function calls,

and variables.

The following are the factors identified that contribute to the SCSS block

complexity:

i. Number of regular attributes (NRA): According to Adewumi et al., (2012),

the more the number of attributes in a rule block the more complex it

becomes.

460 Ndia et al.

ii. Number of operators (NO): Researchers have recognized the number of

operators as a factor that contributes to the complexity of code (Misra and

Cafer, 2012; Halstead, 1977)

iii. Use of control directives: The control directives contribute to the

complexity of code as supported by various studies (Muketha et al., 2010;

Misra and Cafer, 2012; McCabe, 1976). In rule blocks, the use of control

directives is assigned weights as shown in Table 2. The weights are adopted

from Törn et al. (1999) who proposed a value of 1.3 for a branch and 1.5 for

a loop. The number of branch statements (NB) and the number of looping

statements (NL) are considered.

iv. Number of function calls (NFC) is also supported by studies as an aspect

that contributes to code complexity (Misra and Cafer, 2012; Shao and

Wang, 2003). An attribute with a function call is assigned a weight of 1.3

like a branch, this weighting is informed in consistence with the way Misra

and Cafer (2012) assigned selection/branch statements and function calls

with the same weight.

v. Number of mixin calls (NMC): The @include statement simply calls a

certain declared mixin in the code. This increases complexity because what

is being called is in a different place in the code. @include directive rule is

weighted at 1.3 the same as the function calls.

vi. Number of extend directives (NE): This rule directive inherits a selector,

meaning that code complexity increases when it’s implemented. @extend

directive rule is weighted at 1.3, just like function calls because some code

in a different place is being referred.

Table 2. Weights for basic control structures

Type of directive Statements Cognitive weight

Use of @rule

directives

@include and @extend 1.3

Branch @if , @else if , if () and function

calls, mixin calls, use of extends

 1.3

Loop @for, @while, and @each 1.5

To calculate ABCCSCSS, the complexity of each SCSS block is computed herein

referred to as Block Cognitive Complexity (BCC). The sum of complexity of all SCSS

blocks is computed and is represented by the Total Block Cognitive Complexity metric

(TBCC). TBCC is then divided by the number of all SCSS blocks (NOBL). NOBL is a

simple size metric that counts all the blocks used in SCSS.

i. BCC = NRA + NO + (NB*1.3) + (NL * 1.5) + (NFC * 1.3) + (NMC * 1.3)

+ (NE *1.3)

ii. TBCC=∑ 𝐵𝐶𝐶𝑖
𝑛
𝑖=1

Where n is the total number of SCSS blocks

iii. ABCCSCSS = TBCC / NOBL

 Complexity Metrics for Sassy Cascading Style Sheets 461

Nesting Factor for SCSS (NFSCSS): Nesting refers to the enclosing of constructs

such as if, while, for and each inside other constructs. Nesting increases program

complexity (Li, 1987). SCSS allows nesting of CSS rules inside each other instead of

repeating selectors in a separate declaration (Cederholm, 2013). According to Frain

(2013), the nesting of rules should be kept as shallow as possible otherwise, it reduces

the maintainability of the code. This means the higher the nesting level the more

complex a program.

Regular CSS doesn’t have nesting feature, therefore nesting concept in SCSS is

borrowed from structured programming languages and object-oriented programming

(OOP) languages. However, nesting in SCSS has an extra component as compared to

other languages. In the regular programming languages when defining metrics only

nesting depth is usually considered, while in SCSS we should consider nesting depth and

nesting breadth. Fig. 3 demonstrates nesting depth where we have countries-list rule

block inside header rule block and li rule block inside countries-list rule block.

Nesting breadth refers to having several independent rule blocks inside a single rule

block. For example, in Fig. 4 the countries-list rule block and the li rule block are two

independent rule blocks inside the header rule block. The two blocks countries-list and li

rule blocks have no relationship with each other, only that they share the features of the

header rule block. However, the nesting breadth is not considered with the control

directives of SCSS, since all the nested blocks have a relationship with each other.

Fig. 4. SCSS code with nesting breadth

In the computation of the nesting depth, a metric value of 1 will be assigned to the

first level, a value of 2 to the second level, a value of 3 to the third level and so on

(Chhilar and Bhasin, 2011). A nesting depth of 3 means we have three levels of nesting,

meaning the depth cognitive complexity (DCC) value is 3+2+1=6 and if it’s a nesting

depth of 5 then DCC value will be 5+4+3+2+1=15. The calculation of nesting breadth

header{

width: 90%;

position: absolute;

left: 5%;

top: 45px;

height: 97px;

.countries-list{

position: absolute;

left: -55px;

top: 100px;

@include infobox;

}

li{

display: block;

margin-bottom: 5px;

}

}

462 Ndia et al.

simply counts the number of SCSS blocks inside a single SCSS block. Therefore, if

there are two independent rule blocks in a single block, then the complexity is assigned

as 2.

Therefore, the proposed metric NFSCSS is meant to compute the nesting level by

considering the total depth nesting depth (TDNL) and the total breadth nesting level

(TBNL) of all SCSS blocks.

i. DCC =∑ (𝑚 − 𝑖𝑚−1
𝑖=0)

Where m is the nesting depth

ii. TDNL=∑ 𝐷𝐶𝐶𝑘𝑛
𝑘=1

Where n = number of SCSS blocks

iii. TBNL = number of independent blocks in different single rule blocks

iv. NFSCSS = TDNL * TBNL

Selector Use Inheritance Level (SUIL): This metric measure complexity brought

about by inheriting selectors in SCSS. Though there is a form of inheritance in the

regular CSS, it doesn’t allow inheritance of selectors. The inheritance concept in SCSS

is borrowed from the object-oriented software. Therefore, the SUIL metric for SCSS is

motivated by the class inheritance factor (CIF) metric of the OOP domain.

Fig. 5. Difference in coupling between OOP and SCSS

The proposed SUIL modifies the CIF metric and is calculated by taking the sum of

all inherited selectors which is divided by the total number of all selectors.

Class B {

 attributes;

 methods;

}

Class A {

 attributes;

 methods;

}

a) Coupling in OOP

Rule block C {

 attributes;

 directives;

}

Rule block A {

 attributes;

 directives;

}

Rule block B {

 attributes;

 directives;

}

Mixins

Variables

b) Coupling in SCSS

Class C {

 attributes;

 methods;

}

 Complexity Metrics for Sassy Cascading Style Sheets 463

SUIL = ∑ NSI𝑛
𝑖=1 / ∑ 𝑁𝑆𝑛

𝑖=1

where NSI is the Number of all selector inheritance instances and NS is the Number of

all selectors in the program and n is the number of SCSS blocks.

Coupling Level for SCSS (CLSCSS) metric

Coupling is the measure of the strength of association established by a connection

from one class to another (Stevens et al., 1974; Chidamber and Kemerer, 1994). In OOP,

coupling occurs when methods of one class use methods or variables of another class. In

SCSS, coupling occurs when rule blocks share mixins and variables. The more the rule

blocks sharing the same mixin or variable, the higher the coupling level. Fig. 5a

demonstrates coupling in OOP, where Class B methods and variables can be accessed by

both Class A and Class C. In Fig. 5b, the mixins, and variables are global data which are

shared by Rule block A, Rule block B and Rule block C.

A need for a new metric for measuring coupling level in SCSS arises. The CLSCSS

metric is proposed and it’s computed by summing the number of all declared mixins

(NDM) with the number of all declared variables (NDV) which is then divided by the

summation of all the number of mixin calls (NMC) and total number of all variable

instances (NVI) in the program.

CLSCSS = (NDM+NDV) / (∑ 𝑁𝑀𝐶𝑛
𝑖=1 +∑ 𝑁𝑉𝐼𝑛

𝑖=1)

where n is the number of SCSS blocks in the program

4. Computing Metrics Values for SCSS Code

Three code snippets and three real-world projects have been identified for demonstrating

how the proposed metrics are to be computed. These are presented in the subsequent

sections.

4.1. Computing the Metrics Values of Three Code Snippets

As an initial step, three code snippets are analyzed using the proposed metrics with the

aim of ascertaining whether the metric values are intuitional. These code snippets are

presented in Appendix 1. Snippet 1 has 14 SCSS blocks, 3 mixins declarations, 2

variables declaration, 5 mixin instances, 3 variable instances, 1 extend directive, 5

operators, 9 selectors, 1 for statement and nesting feature is used. Snippet 2 has 14 SCSS

blocks, no mixins declared, I variable declaration, 2 variable instances, 1 function call, 3

extend directives, 6 operators, 10 selectors, and nesting feature is implemented. Snippet

3 has 9 SCSS blocks, 1 mixin declaration, 2 variable declarations, 2 mixin instances, 3

variable instances, 1 extend directive, no operators, no control directives,8 selectors and

nesting feature is implemented. These results are presented in Table 3.

464 Ndia et al.

Table 3. Summary of metric values for the code snippets

4.2. Computing the Metrics Values of a Real Project

In order to fully establish the intuition of the proposed metrics, SCSS code from three

real-world projects was obtained by using google advanced search feature. Using this

feature, project files with .scss extension were identified and downloaded from the Web.

These files are located in the following website links:

1. http://happy-shala.com/sass/

2. http://www.greatjewishmusic.com/Midifiles/Rosh-Hashana/sass/

3. http://www.mce.ie/public/js-webshim/dev/shims/styles/scss/

The main file considered for analysis in the first website link is called style.scss. This

file depends on two other files, namely, the mixins.scss and the vars.scss. These three

files were downloaded and analyzed together. The main file considered for analysis in

the second website link is called style.scss. The file also depends on two other files,

namely, mixins.scss and vars.scss. The three files were downloaded and analyzed

together. The main file considered for analysis in the third and final website link is called

shim.scss. This file, together with its two dependent files, api-shim.scss and extends.scss

were downloaded for analysis. Metrics results obtained after analysis of these three

websites are presented in Table 4.

Table 4. Summary of metric values for the real-world projects

Metrics Snippet 1 values Snippet 2 values Snippet 3 values

ABCCSCSS 1.90 1.99 1.76

NFSCSS 1.0 12.0 3.0

SUIL 0.11 0.30 0.13

CLSCSS 0.63 0.50 0.60

Metrics happy-shala.com greatjewishmusic.com mce.ie

ABCCSCSS 2.58 2.17 2.9

NFSCSS 6960 8019 3034

SUIL 0 0 0.03

CLSCSS 0.31 0.27 2.33

 Complexity Metrics for Sassy Cascading Style Sheets 465

5. Theoretical Validation Results

Theoretical validation of metrics is an important step in the definition of new metrics

because it shows that the metrics have a sound mathematical foundation. Therefore, the

proposed metrics have been validated using Weyukers properties and Kaner framework.

Weyuker’s properties have been used by several researchers to evaluate their proposed

software metrics and they agree to the fact that it’s a necessary framework and that for a

measure to be valid it must satisfy most of its properties (Cherniavsky and Smith,1991;

Abreu and Carapuca,1994; Chidamber and Kemerer,1994; Gursaran,2001; Sharma et al.,

2006; Muketha et al., 2010; Baski and Misra, 2011). The Kaner framework has been

used by a number of researchers (Adewumi et al., 2012; Baski and Misra, 2011), and has

been applied in this paper for practical evaluation of the proposed metrics. The

summarised Weyuker’s results are presented in Table 5.

5.1. Validation with Weyukers properties

Property 1: (∃P) (∃Q) (|P| ≠ |Q|) where P and Q are two different SCSS blocks. This

property is satisfied when there exist SCSS blocks P and Q such that |P| is not equal to

|Q|. Therefore, if we can’t find two SCSS blocks of different complexity, then all SCSS

blocks have the same complexity value. All the metrics proposed ABCCSCSS, NFSCSS,

SUIL, and CLSCSS, return different complexity value for any two SCSS blocks that are

not identical and therefore they satisfied this property.

Property 2: Let c be a non-negative number. Then there are finitely many SCSS

blocks of complexity c. This property asserts that if an SCSS block changes then its

complexity changes. When the number of attributes is changed, complexity values

change for the ABCCSCSS. In addition, when the number of extend rule directives

changes then SUIL value change, and when the number of include statements and

variables change then CLSCSS metric value changes. In addition, NFSCSS metric value

changes when you reduce or increase nested SCSS blocks, meaning it also satisfies this

property.

Property 3: There can exist distinct SCSS blocks P and Q where |P| = |Q|. This

property affirms that two different SCSS blocks can have the same metric value, this is

to say that two SCSS blocks have the same level of complexity. This property was

satisfied with all the proposed metrics.

Property 4: (∃P) (∃Q)(P ≡ Q &|P| ≠ |Q|)

There can be two SCSS blocks P and Q whose external features look the same,

however, due to different internal structure |P| is not equal to |Q|. This property asserts

that two SCSS blocks with the same number of attributes and directives could return

different metric values. This property is satisfied by ABCCSCSS, SUIL, and CLSCSS. The

NFSCSS metric values could change even in the circumstances where the number of

nested rules is the same. Therefore, NFSCSS satisfies this property.

Property 5: (∃P) (∃Q) (|P| ≤ |P; Q| & (|Q| ≤ |P; Q|)

This property asserts that if we concatenate two SCSS blocks P and Q, the new

metric value must be greater than or equal to the individual rule block. All the proposed

metrics return numeric values meaning that they satisfy this property.

Property 6: (∃P) (∃Q) (∃R) (|P| =|Q| and |P; R| ≠ |Q; R|)

466 Ndia et al.

This property implies that if two SCSS blocks have same metric value (P and Q), it

doesn’t necessarily mean that when each of the SCSS blocks is concatenated with

similar SCSS block R, the resulting metric values are the same. All the proposed metrics

have physical components meaning that they return fixed values. Therefore they don’t

satisfy this property.

Property 7: If you have two SCSS blocks P and Q which have the same number of

attributes in a permuted order, then |P| is not equal to |Q|.

This property implies that the order of similar attributes affects their complexity.

Therefore, if two rule blocks have the same number of attributes but differ in the

ordering, it’s not necessary that they have the same complexity level. In the case where

the SCSS blocks length is constant and you only change the permutation of the order of

statements then all the proposed metrics will retain the same level of complexity.

Therefore all the metrics defined didn’t satisfy this property.

Property 8: If P is a renaming of Q, then |P| = |Q|

Where you have two SCSS blocks P and Q differing only in their selector names,

then |P| is equal to |Q|. The metric values for all the proposed metrics are either size

measures, complexity measures or coupling measures and they all return numeric values.

Therefore, all proposed metrics satisfied this property.

Property 9: (∃P) (∃Q) (|P| +|Q| < (|P; Q|)

This property asserts that there exist two SCSS blocks P and Q, where the

complexity metric value of the two SCSS blocks when summed up is less than when the

rule blocks are interacting. The interaction between rule blocks and the growth of rule

blocks over time adds to the complexity of rule blocks. The growth of blocks complexity

happens when new attributes are added or even when a new SCSS block is added to the

existing SCSS block, meaning that the new metric value is equal to or greater than the

sum of the two original rule blocks. All the metrics ABCCSCSS, NFSCSS, SUIL, and

CLSCSS satisfied this property.

Table 5: Summary of validation of SCSS metrics with Weyuker’s properties

Property ABCCSCSS

NFSCSS SUIL CLSCSS

1    

2    

3    

4    

5    

6    

7    

8    

9    

 Complexity Metrics for Sassy Cascading Style Sheets 467

5.2. Practical Evaluation with Kaner Framework

Kaner framework is used to prove the practical utility of the proposed metrics.

Therefore, the aim of implementing Kaner framework is to find out if the metrics

defined make any sense and to enable the designers to see how the metrics can be used

for experimental purposes, thus proving their practicality (Misra and Adewumi, 2018).

According to Kaner (2004), the following eleven questions should be addressed for

purposes of evaluation of software metrics.

i. What is the purpose of this measure?

The purpose of the measure must be clear so as consider it as a valid measure.

Therefore, the purpose of this measure is to evaluate the complexity of sassy cascading

style sheets (SCSS).

ii. What is the scope of this measure?

The measure used should have a specific area it acts on. The proposed metrics will be

used by front web developers in web-based projects, particularly those who style the

web-documents.

iii. What attribute are we trying to measure?

The attribute to measure will be maintainability through its sub-attributes;

understandability, modifiability, and testability.

iv. What is the natural scale of the attribute we are trying to measure?

The proposed metrics will measure understandability, modifiability, and testability

and they can all be measured on an ordinal scale

v. What is the natural variability of the attribute?

The quality attributes are subjective in nature, meaning that different SCSS

developers can rate the understandability, modifiability, and testability of the same code

differently.

vi. Metrics definition

The metrics must be clearly defined and in this study, the metrics have been defined

in section 3.

vii. What is the metric and what measuring instrument do we use to perform the

measurement?

There are four proposed metrics; ABCCSCSS, NFSCSS, SUIL and CLSCSS and they have

been computed manually. In addition, a static metrics tool will be developed to measure

the metrics.

viii. What is the natural scale for this metric?

The natural scale for all the metrics defined fall in the ratio scale

ix. What is the natural variability of readings from this instrument?

When we manually compute the metrics there is no subjectivity to it, meaning that

there is no variability. For the metrics tool, the software will be tested to ensure no bugs

that would lead to erroneous metric values.

x. What is the relationship of the attribute to the metric value?

The maintainability of SCSS is directly related to the proposed complexity metrics.

This means we can tell the understandability, modifiability, and testability of SCSS by

using the proposed metrics.

xi. What are the natural and foreseeable side effects of using this instrument?

468 Ndia et al.

Since the static metrics tool will be thoroughly tested, then there will be no negative

effects after the implementation of the tool.

6. Discussion

Results based on the three code snippets show that the new metrics are intuitional. The

ABCCSCSS metric value for snippet 2 at 1.99 is higher than the metric value for snippet 1

though they have the same number of SCSS blocks. This is reasonable because snippet 2

has more attributes, control directives and extend directives than snippet 1. The NFSCSS

metric value for snippet 2 at 12.0 is higher than all others, which makes sense because it

has more nested blocks. The SUIL metric value for snippet 2 is the highest at 0.30

snippets, this means that it has many extend directives implemented in relation to the

number of selectors in the snippet. The final metric CLSCSS value is highest in snippet 1 at

0.63, this is reasonable because the mixins and variables are more extensively shared in

snippet 1, as compared to other snippets.

Results based on the three real-world projects show that the metrics are intuitional, as

shown by the different metrics values computed. The metrics values are an indicator of

the different levels of complexity of the SCSS code in those projects. For example, in

happy-shala.com, the ABCCSCSS metric value is 2.58 and is higher than that of

greatjewishmusic.com which is 2.17, but lower than that of mce.ie website value of 2.9.

The NFSCSS metric value is highest for greatjewishmusic.com at 8019, followed by

happy-shala.com at 6960 and mce.ie reports the lowest value at 3034. The SUIL metric

value for the mce.ie website is 0.03 and zero (0) for both the happy-shala.com and

greatjewishmusic.com websites. This means that the inheritance feature is implemented

only in the mce.ie website. The last metric CLSCSS value is highest in mce.ie at 2.33,

followed by happy-shala.com at 0.31 and greatjewishmusic.com reported the lowest

value of 0.27, meaning that it has a lot of sharing of mixins and variables.

In the case of validation with Weyukers properties, results show that all the metrics

satisfied seven out of nine properties. This makes the measures reasonable though they

all didn’t satisfy property 6 and 7, and this is because they assign fixed weights to the

attributes and the rule directives. In addition, interactions in SCSS don’t add any extra

external complexity and the permutation of statements don’t add any complexity.

Results from Kaner framework show that all the four metrics satisfy its eleven

evaluation requirements. This implies that the proposed metrics are useful to practically

evaluate SCSS code complexity.

7. Conclusion and Future Work

This paper proposes four metrics for measuring the complexity of SCSS code. The

metrics were used to compute the complexities of three code snippets and three real-life

world projects. Values obtained from the code snippets and the real-life projects show

that the metrics are intuitional. It was established that the more complex files returned

higher complexity metric values than the less complex files. For example, while

computing metrics from real-world projects, the mce.ie website returned higher

ABCCSCSS values than other websites due to the fact that it had higher average block

complexity. It was also established that the greatjewishmusic.com website returned

 Complexity Metrics for Sassy Cascading Style Sheets 469

higher NFSCSS values due to the fact that its rule blocks are more nested. Similarly, the

mce.ie website returned higher SUIL and CLSCSS values due to the fact that it has

implemented the inheritance feature and coupling respectively. High values of each of

these metrics imply that it will be difficult to understand, modify and test the code. Front

web developers should, therefore, be concerned whenever metrics values tend to go

high, as these could affect their design decisions.

Validation results of the proposed metrics using Weyukers properties showed that all

the metrics satisfied most of its properties, meaning that all the metrics are theoretically

sound. The study further evaluated the proposed metrics with Kaner framework and all

metrics proved their practicality from the theoretical point of view. Therefore, the new

metrics are structurally good and can be used together to show the full picture of the

SCSS complexity.

In the future, empirical validation of the proposed complexity metrics will be carried

out using real-world projects. Another future work is to develop a metrics tool for SCSS

so as automate the computation of these metrics.

References

Abreu, F. B., Carapuca, R. (1994). Candidate Metrics for Object-Oriented Software within a

Taxonomy Framework. Journal of System Software, Vol. 26, pp. 87–96.

Abreu, M., Abreu, F. B. (1996). Evaluating the impact of Object-Oriented Design on Software

Quality. Proceedings of 3rd International Software Metrics Symp. Berlin.

Adewumi, A., Misra, S., Ikhu-Omoregbe, N. (2012). Complexity Metrics for Cascading Style

Sheets. In B. Murgante (Ed.), Lecture Notes in Computer Science (Vol. 7336, pp. 248-257).

Springer.

Baski, D., Misra, S. (2011). Metrics Suite for Maintainability of XML Web-Services. IET

Software, 5(3), 320-341.

Brilliant, S.S., Knight, J.C. (1999). Empirical research in software engineering, ACM SIGSOFT

Soft. Eng. Notes, 24, (3), pp. 45–52.

Cardoso, J. (2007). Complexity Analysis of BPEL Web Processes. In: Software Process:

Improvement and Practice , Wiley Online Library.

Cederholm, D. (2013). A BOOK APART: Sass for Web Designers. (M. Brown, E. Kissane, J.

Bolton, and T. Lee, Eds.) New York, USA: Jeffrey Zeldman.

Chawla, S., Nath, R. (2013). Evaluating Inheritance and Coupling Metrics. International Journal

of Engineering Trends and Technology (IJETT), 4(7), 2903-2908.

Cherniavsky, J., Smith, C.(1991). On Weyukers Axioms for Software Complexity Measures. IEEE

Transaction on Software Engineering, Vol. 17, No. 6, pp. 636–638.

Chhilar, U., Bhasin, S. (2011). A new complexity weighted composite complexity measure for

object-oriented systems. International journal of information and communication technology

research, Vol 1, No. 3.

Chidamber, S.R., Kemerer, C.F.(1994). A Metrics Suite for Object-Oriented Design. IEEE

Transactions on Software Engineering, Vol. 20, No. 6, pp. 476–493.

Chung, C., Lee, M. (1992). Inheritance based Object-Oriented Software Metrics. IEEE Region 10

Conference. Melbourne, Australia.

Fenton, N. E., Pfleeger, S. L. (1997). Software metrics: a rigorous and practical approach. PWS

Pub.

Frain, B. (2013). Sass and Compass for designers. Packt Publishing Ltd.

Geneves, P., Layaida, N., Quint, V. (2012, April). On the analysis of cascading style sheets.

In Proceedings of the 21st international conference on World Wide Web (pp. 809-818).

ACM.

470 Ndia et al.

Ghosheh, E., Black, S., Qaddour, J. (2008). Design metrics for web application maintainability

measurement. IEEE/ACS International Conference on Computer Systems and Applications

(pp. 778-784). Doha: IEEE.

Gill, N. S., Sikka, S. (2011). Correlating Dimensions of Inheritance Hierarchy with Complexity

and Reuse. International Journal on Computer Science and Engineering (IJCSE), 3(9),

3250-3253.

Gursaran, G.R. (2001). On the Applicability of Weyuker Property Nine to Object-Oriented

Structural Inheritance Complexity Metrics. IEEE Transaction on Software Engineering, Vol.

27, No. 4, pp. 361–364.

Halstead, M. H. (1977). Elements of Software Science (Operating and programming systems

series). Elsevier Science Inc., New York, NY.

Harrison R., Counsell S., Nithi, R., An Evaluation of the MOOD set of Object-Oriented Software

Metrics, IEEE Transactions on Software Engineering, vol. 24 no. 6, 1999, p. 491-496

Shao Jingqiu, Wang Yingxu (2003, April). A new measure of software complexity based on

cognitive weights. Can. J. Elect. Comput. Eng., Vol. 28, No. 2.

Kaner, C. (2004). Software engineering metrics: What do they measure and how do we know?. In

in METRICS 2004. IEEE CS.

Khan, A. A., Mahmood, A., Amralla, M. S., Mirza, T. H. (2016, January). Comparison of

Software Complexity Metrics. International Journal of Computing and Network Technology,

4(1), 19-26.

Kushwaha, D. S., Misra, A. K. (2006, September). Improved Cognitive Information Complexity

Measure: A Metric that establishes Program Comprehension Effort. SIGSOFT Software

Engineering Notes, 31(5), 1-7.

Li, E. Y. (1987). A measure of program nesting complexity. National Computer Conference, (pp.

531-538). San Luis Obispo, California.

Li, W., and Henry, S. (1993). Object-oriented metrics that predict maintainability. The Journal of

Systems and Software, 23(2), 111-122.

Mayer, T., Hall, T. (1999, July). Measuring OO Systems: a critical analysis of the MOOD

metrics. In Technology of object-oriented languages and systems, 1999, proceedings of (pp.

108-117). IEEE.

Mazinanian, D., Tsantalis, N (2016, March). An empirical study on the use of CSS preprocessors.

In 2016 IEEE 23rd international conference on Software Analysis, Evolution, and

Reengineering (SANER) (pp. 168-178). IEEE.

McCabe, T. J. (1976, December). A Complexity Measure. IEEE TRANSACTIONS ON

SOFTWARE ENGINEERING, SE-2(4), 308-320.

Mesbah, A., Mirshokraie, S. (2012, June). Automated analysis of CSS rules to support style

maintenance. In Proceedings of the 34th International Conference on Software

Engineering (pp. 408-418). IEEE Press.

Misra, S., Adewumi, A. (2018). Object-Oriented Cognitive Complexity Measures: An Analysis. In

Intelligent systems: Concepts, Methodologies, Tools, and Applications (pp. 1324-1347). IGI

Global

Misra, S., Cafer, F. (2012, November). Estimating Quality of JavaScript. The International Arab

Journal of Information Technology, 9(6), 535-543.

Misra, S., Akman, I., Koyuncu, M. (2011, June). An inheritance complexity metric for object-

oriented code: A cognitive approach. Indian Academy of Sciences, 36(3), 317-337.

Muketha, G. M., Ghani, A. A. A., Selamat, M. H., Atan, R. (2010). Complexity Metrics for

Executable Business Processes. Information Technology Journal, 9: 1317-1326.

Ogheneovo, E. E. (2014, December). On the Relationship between Software Complexity and

Maintenance Costs. Journal of Computer and Communications, 2, 1-16.

Parthasarathy, S., Anbazhagan, N. (2006). Analyzing the software quality metrics for object-

oriented technology. Inform. Technol. J, 5, 1053-1057.

Piwowarski, P. (1982). A Nesting Level Complexity Measure. ACM SIGPLAN Notices. 17(9),

44-50.

 Complexity Metrics for Sassy Cascading Style Sheets 471

Punt, L., Visscher, S., Zaytsev, V. (2016, October). The A? B* A Pattern: Undoing Style in CSS

and Refactoring Opportunities it Presents. In 2016 IEEE International Conference on

Software Maintenance and Evolution (ICSME)(pp. 67-77). IEEE.

Sharma, N., Joshi, P., Joshi, R.K. (2006). Applicability of Weyuker’s Property 9 to Object-

Oriented Metrics. IEEE Transaction on Software Engineering, Vol. 32, No. 3, pp. 209–211.

Stevens, W. P., Myers, G. J., Constantine, L. L. (1974). Structured design. IBM Systems Journal,

13(2), 115-139.

Törn, A., Andersson, T., Enholm, K. (1999). A complexity metrics model for software. South

African Computer Journal 24: 40-48.

Appendix: Code Snippets

Code Snippet 1

@mixin Raleway-SemiBold {

 font-family: 'Raleway-SemiBold';

}

@mixin Raleway-Medium {

 font-family: 'Raleway-Medium';

}

@mixin PlayfairDisplay-Regular {

 font-family: 'PlayfairDisplay-Regular';

}

$color1: #f4f4f4;

$color2: #000;

p {

font-size: 5px + (6px * 2);

font-color: $color1;

@include PlayfairDisplay-Regular;

}

span{

 width: 60px;

 height: 45px;

 position: absolute;

 @include Raleway-Medium;

 }

@for $i from 1 through 4 {

.p#{$i} { padding-left : $i * 10px; }

}

@function remy ($pxsize) {

 @return ($pxsize/16) + rem;

}

h1 {

font-size: remy(32);

472 Ndia et al.

font-color: $color2

}

h2{

@extend p;

font-color: $color2

}

h3 {

@include Raleway-Medium;

}

h4 {

@include Raleway-Medium;

}

h5 {

@include Raleway- SemiBold;

}

@media (min-width: 768px) {

 .modal-dialog {

 position: relative;

 top: 15%;

 }

}

Code Snippet 2

$colortest: 1;

span{

 width: 60px;

 height: 45px;

}

p {

font-size: 5px + (6px * 2);

color:#ff0000;

@extend span;

@if $colortest >1 {

text-color: blue;

 @if $colortest == 1 {

 text-color: white;

 }

 }

}

@function remy ($pxsize) {

@return ($pxsize/16) + rem;

}

h1 {

font-size: remy(32);

@extend span;

}

h2{

@extend p;

}

 Complexity Metrics for Sassy Cascading Style Sheets 473

#country-toggle{

 width: 60px;

 height: 45px;

 span:nth-child(1) {

 top: 41px;

 }

 span:nth-child(2) {

 top: 49px;

 }

 }

 .dropdown-menu{

 li{

 padding: 10px .7em;

 &:last-child{

 margin:0;

 }

 }

 }

 p{

 font-size: 5px

color:#ff0000;

 }

Code Snippet 3

$color1: #04f5f7;

$color2: #000111;

@mixin Raleway-SemiBold {

 font-family: 'Raleway-SemiBold';

}

.js-offcanvas {

 color: $color1;

 background: $color2;

 ul {

 padding-left: 0;

 margin-bottom: 0;

 li {

 display: block;

 border-bottom: 1px solid

 font-size: 1.6rem;

}

 }

}

#get-in-touch {

 . plst {

 width: 50%;

 margin: 2rem auto;

 @include Raleway-SemiBold;

 }

}

474 Ndia et al.

p{

font-size: 5px

color:#ff0000;

 }

h1 {

font-color:$color2;

@include Raleway-SemiBold;

}

h2{

@extend p;

}

Received November 17, 2018, revised August 2, 2019, accepted October 14, 2019

