
Baltic J. Modern Computing, Vol. 7 (2019), No. 4, 475-486
https://doi.org/10.22364/bjmc.2019.7.4.02

RDB2OWL: A Language for Database to OWL

Mapping and its Implementation

Guntars BŪMANS
1
, Kārlis ČERĀNS

2

1Faculty of Science and Engineering, Liepaja University,

Kr. Valdemāra iela 4, Liepaja LV-3401, Latvia,
2Institute of Mathematics and Computer Science, University of Latvia,

Raina blvd. 29, Riga, LV-1459, Latvia

Abstract: Most data in industry still resides in relational databases (RDB) but Semantic web uses

standard RDF and OWL formats. We consider a previously developed mapping language

RDB2OWL allowing compact and end-user readable mapping specification. We describe the

RDB2OWL implementation by translation into R2RML standard language that avoids the view

rowset multiplication due to several 1-to-n relations from a single class in the ontology.

Keywords: Database to ontology mapping, ontologies, RDF, mapping patterns

1. Introduction

Most data in industry still resides in relational databases (RDB) but Semantic web uses

standard RDF (WEB, a) and OWL (Motik et al., 2012) formats. Therefore, exposing the

contents of RDB to RDF and OWL formats enables the integration of the RDB contents

into the Linked Data (Speicher, 2014) and Semantic web (Berners-Lee et al., 2001)

information landscape. An important benefit of RDB to-RDF/OWL mapping is also the

possibility of creating a conceptual model of the RDB data on the RDF Schema/OWL

level and further on accessing the RDB contents from the created semantic/conceptual

model perspective.

 The task of mapping relational databases to RDF/OWL formats is well

understood, widely studied and technically implemented, for example in D2RQ (WEB,

b), Virtuoso RDF Graphs (Blakeley, 2007), Ultrawrap (Sequeda et al., 2009), Spyder

(WEB, c) and W3C standard R2RML (Das et al., 2012) among different RDB-to-

RDF/OWL mapping languages and tools. Most of the RDB-to-RDF/OWL mapping

approaches offer languages for conceptually clear mapping structure with less attention

paid, however, to the concise mapping writing.

In earlier works (Čerāns and Būmans, 2011), (Būmans and Čerāns, 2011), (Būmans

and Čerāns, 2016) on RDB2OWL language the authors described a possibility of reusing

both the target ontology and source database schemas in the mapping specifications.

RDB2OWL mapping information is written in a compact textual form into the

annotations of the target ontology entities. The RDB2OWL mapping processing is able

to use implicit information about e.g. subclass relations, property domain and range

classes, database tables, columns, foreign and primary keys.

https://doi.org/10.22364/bjmc.2019.7.4.02

476 Būmans and Čerāns

RDB2OWL language has a possibility to define and call user defined functions and

specify meta-level features such as multi-class conceptualization to avoid lengthy SQL

filter expressions if many OWL data properties have a common domain class but maps

to linked DB table. So, compact and end-user-readable mapping specifications are

obtained.

The currently available RDB2OWL mapping implementation is by translating the

mappings into D2RQ to be executed by D2R server (WEB, b)), or into the W3C

standard R2RML language (Das et al., 2012), supported by several tools, including

ontop (Calvanese et al., 2015) and R2RML Parser (WEB, d). The tools supporting the

RDB2OWL mapping translation target notations D2RQ or R2RML allow to create a

SPARQL endpoint to query the data from the relational database directly, or produce

the RDF dump of the source RDB.

The RDB2OWL mapping translation process also has some inferencing facilities

such as subclass, subproperty and inverse property inference.

To enable the practical applicability of the generated R2RML mappings, their

efficiency has to be considered, what is done originally for the first time in this paper.

In what follows, Section 2 introduces RDB2OWL language syntax. Section 3

describes the implementation, including the mapping optimization concerns. Section 4

concludes the paper.

2. RDB2OWL mapping language review

RDB2OWL mappings describe correspondence between elements of OWL

ontology/RDF schema and relational DB schema. The RDB2OWL mapping elements

describe the connections to the database for ontology/RDF schema classes (class maps),

object properties (object property maps) and data properties (data property maps),

ascribed by annotation assertions to the respective ontology/schema entities.

classMap: (VarName '=')? tableExpr uriPattern?;

tableExpr: tableRefList (';' tableFilterExpr)?;

uriPattern: '{uri=(' valueExpr (',' valueExpr)* ')}';

tableRefList: tableRefItem (',' tableRefItem)*;

tableRefItem: (tableNavigItem tableRefItemLink?

 | tableRefItemLink);

tableNavigItem: tableExprPlain (classMapRef)?;

tableRefItemLink : linkExpr (tableNavigItem tableRefItemLink?)?;

linkExpr: ('[' valueList ']')? ('->'|'=>') ('[' valueList ']')?;

tableExprPlain: simpleTableExpr | '(' tableExpr ')';

simpleTableExpr: (classMapRef | namedRef | tableUseExpr) alias?;

classMapRef: '<s>' | '<t>';

namedRef: '[[' VarName ']]';

tableUseExpr: (dbAlias '::')? VarName;

objectMap: tableExpr;

dataMap: ('[' tableExpr '].')? valueExpr ('^^' xsdRef)?;

Figure 1. RDB2OWL EBNF grammar fragment

 RDB2OWL: A Language for Database to OWL Mapping and its Implementation 477

A RDB2OWL class map has a table expression, possibly involving a join of several

tables and a filter, and a pattern for instance resource URI (uriPattern) construction from

a DB table expression. A class map attached to an ontology class describes instances for

this class. The EBNF grammar code in Figure 1 shows some essential parts of

RDB2OWL mapping language grammar for class map, object map and data map

expressions.

Figure 2 illustrates the parse tree for tableExpr expression “Course c, Teacher

t;c.Teacher_ID=t.Teacher_ID” The expression contains a table list followed by a filter

expression after semicolon.

Figure 2. The parse tree for tableExpr “Course c, Teacher t; c.Teacher_ID=t.Teacher_ID”

The same table expression can be written with table navigation list containing just

one navigation link “Teacher[Teacher_ID]->[Teacher_ID] Course” the parse tree of

which is shown in Figure 3.

478 Būmans and Čerāns

Figure 3. The parse tree for tableExpr “Teacher[Teacher_ID]->[Teacher_ID] Course”

An object property map (objectMap) refers to its source and target class maps- that

are attached to the resp. domain and range classes of the property, so reusing URI

generation patterns. An object property map has a table expression to specify how to

link tables attached to the domain and range classes. Similarly, a data property map

(dataMap) reuses URI generation pattern from domain class map. A data property map

can have additional table expression that can add additional linked tables to the tables

mapped to the domain class of the property. A data property map also has a value

expression describing the computation of the property literal value.

We illustrate the basic RDB2OWL mapping constructs on a simple mini-University

ontology and mapping example created in OWLGrEd
1
 ontology editor, shown in Figure

4 where mappings are written as annotations in form DB(“<mapping expression>”).

The corresponding RDB schema is shown in Figure 5. The ontology, besides the

intuitive and “common sense” properties for the classes, contains also multi-valued

properties hasMark and dateCompleted for the Student class, linking each student

directly to all marks and completion dates for all courses taken by the student.

On a more detailed level, a class map syntax consists of table expression and optional

URI pattern specification in the form of list of comma separated expressions to be

evaluated and concatenated, e.g. “Student s {uri=('Student', s.IDCode)}”. Here “Student”

is <tableUseExpr> as subexpression of <simpleTableExpr> in <tableExprPlain> and

“s” is <alias> followed by <uriPattrn> expression. If URI pattern is omitted, the

1 The ontology editor can be downloaded from http://owlgred.lumii.lv/

 RDB2OWL: A Language for Database to OWL Mapping and its Implementation 479

default one is formed from table expression’s leftmost table name followed by its

primary key column(s) value. A class map’s table expression can refer also to a defined

class map either by its explicit name assigned to variable, or by the name of the class for

which it is the sole class map by using <namedRef> expression (e.g. [[Teacher]]), as in

the mappings for the personID property in Figure 4.

A RDB2OWL table expression in simple cases is just a table name (tableUseExpr),

e.g. “Teacher”. A filter expression (<tableFilterExpr>) can be added to a table

expression, after a semicolon, e.g. “Course;Required=1”. The table expressions

(<tableExpr>) can introduce additional tables in the following ways:

a. item list notation with comma-separated, optionally alias-labelled table

expressions, for example,

“Teacher T, Course C; T.Teacher_ID=C.Teacher_ID”

b. navigation list notation (<tableRefItem> with <linkExpr>), such as

“Teacher[Teacher_ID]->[Teacher_ID] Course” which can be shortened to

“Teacher->Course” by omitting navigation columns that are target table’s PK

and their only matching source table’s FK to the target table, that is, FK-to-PK

link. The mark ‘=>’ is used for reverse order, i.e. PK-to-FK link

c. notation putting (a) or (b) in brackets, regarding whole navigation list as a single

item in the item list thus forming nested table expressions

“(Teacher->Course) tc, Registration r; tc.Course_Id=r. Course_Id”. In

grammar to this case corresponds <tableExprPlain> expression that contains

another <tableExpr> in brackets.

Figure 4. Mini-university ontology with RDB2OWL mapping annotations with DB(…) notion

MandatoryCourse
DB("[[Course]]; required=1")

AssocProfessor
DB("[[Teacher]];

Level_code='

AssocProf'")

Person
personName

DB("[[Student]].name")

DB("[[Teacher]].name")

OptionalCourse
DB("[[Course]]; required=0")

Student
nationality DB("[->NATIONALITY].VALUE")

hasMark DB("[=>REGISTRATION].MARK_RECEIVED")

dateCompleted DB("[=>REGISTRATION].DATE_COMPLETED")

DB("STUDENT")

PersonID
IDValue

DBExpr("[[S]].IDCode")

DBExpr("[[T]].IDCode")

DB("T=TEACHER {uri=('PersonID', IDCode)}")

DB("S=STUDENT {uri=('PersonID', IDCode)}")

Course
courseName

DB("name")

DB("COURSE !NoMap")

AcademicProgram
programName

DB("name")

DB("PROGRAM")

Asistant
DB("[[Teacher]];

Level_code='

Assistant'")

Professor
DB("[[Teacher]];

Level_code='

Professor'")

Teacher
DB("TEACHER !NoMap")

enrolled

1

DB("->")

person 0..1

personIDDB("[[Student]][student_id]->[[S]]")

DB("[[Teacher]][teacher_id]->[[T]]")

includes

DB("=>")

takesDB("=>REGISTRATION->")

isTakenBy

teaches

DB("=>")

isTaughtBy

1..*

480 Būmans and Čerāns

Figure 5. Mini-university RDB schema

The navigation links can chain many tables and introduce local filters attached to the

individual navigation link element: “Student:(name=’Bob’)=>Registration -> Course”

An object property map is a table expression that has two subexpressions to denote

its subject and object class maps respectively. Each of these subexpressions can be:

a. explicitly marked by an alias <s> or <t>

b. followed by the mark <s> or <t>; in this case the sole class maps defined

explicitly for the property domain or range class are considered the subject

and object class maps for the property map

c. if explicit <s> and/or <t> marks are not specified these marks are assumed

<s> for the leftmost and <t> for rightmost item within the table expression.

These conventions on object property map and table expression syntax allow writing

object property map in a concise way “->”, if the property corresponds to the sole FK-

to-PK mapping between the tables mapped. The concise form of “=>” is for sole PK-to-

FK link. For example, long form of expression for takes property is

“Student[Student_ID]->[Student_ID]Registration[Course_ID]->[Course_ID]Course”

but the short form is just “=>Registration->”

A data property map is described as column name or column expression that is to be

evaluated in the table context mapped to the sole class map of the property’s domain

class.

There are also more advanced mapping specification options available in RDB2OWL

language, including user defined and RDB2OWL functions, multiclass

conceptualization, auxiliary database objects please see (Būmans and Čerāns, 2011) for

their detailed description.

3. RDB2OWL language implementation

The RDB2OWL mapping tool
2
 reads an annotated OWL ontology, makes a connection

to the source database, reads the database schema information. The database connection

information can be defined as an annotation within the data ontology, or it can be

supplied as a parameter within the RDB2OWL tool configuration.

The RDB2OWL mapping processing and translation to D2RQ/R2RML is done in the

steps shown in Figure 6.

2 http://rdb2owl.lumii.lv/

http://rdb2owl.lumii.lv/

 RDB2OWL: A Language for Database to OWL Mapping and its Implementation 481

Figure 6. RDB2OWL tool implementation activity diagram

The steps details are:

 Read and parse mapping annotations: The ontology with the attached

RDB2OWL annotations is loaded, each annotation is parsed and stored in the

internal RDB2OWL mapping model (Čerāns and Būmans, 2011). In this step only

mere syntax information is stored.

 Supplement MM instances: Load source database schema information into the

model.

 Transform to basic structures: Finalize abstract mapping: the advanced

mapping constructs (e.g. named class maps, shorthands (e.g. omitted navigation

columns), defaults (e.g., URI patterns) and user defined functions) are resolved

into basic mapping constructions bringing the mapping into the “reduced

semantic” RDB2OWL metamodel, outlined here in Figure 7; this model is used

further on as the basis for D2RQ/R2RML mapping code generation,

 Generate D2RQ/R2RML mapping code: generation based on the created

reduced semantic RDB2OWL model.

The RDB2OWL mapping translation processes all ClassMap, ObjectPropertyMap

and DataPropertyMap objects that are stored in the internal RDB2OWL mapping model.

The manipulation of model data and translation into D2RQ/R2RML is done by using

lQuery tool (Liepiņš, 2011) and LuA scripting language. More on translation process to

D2RQ and R2RML see (Būmans and Čerāns, 2016).

482 Būmans and Čerāns

Figure 7. Essential fragments of RDB2OWL metamodel (cf. Būmans and Čerāns, 2016)

Figure 8. “=>Registration: ->” expression in RDB2OWL syntax metamodel

As an example, we demonstrate the translation of the “=>Registration ->” mapping

expression for the takes property in the Mini-university example. After parsing this

expression is stored in internal RDB2OWL syntax model, see Error! Reference source

not found. 8.

During finalizing the abstract mappings, the syntax model is augmented with

information not specified explicitly: missing link columns through ValueList by using

ObjectPropertyMap
objectPropertyURI:String[1]

ClassMap
classURI:String[0..1]

instruction: {?, ?Any, ?Out, ?In} [*]

DataPropertyMap
dataPropertyURI:String[1]

TableExpression
filterExpr:BooleanExpr[0..1]

NavigLink
symbol: {->, =>, =}

DataExpression
expr:ValueExpression

XSDRef
typeName: String

[1]

UriPattern UriItem
expr:ValueExpression

NamedRef
refName: String

ClassRefDefVarRef

NavigItem
order: Integer

RefItem
order: Integer ExprItem

alias: String

ColDef
colName: String

expr:ValueExpression

TableRefExpr
alias: String[0..1]

tName:String[1]

refTable:DBTable

ClassMapRef
mark: {<s>, <t>, empty}

ColumnRef
cValue: String

ColNameRef
colName: String

ValueList
ValueExpression

ColPrefix
text: String

refItem:NavigItem

BooleanExpr

src 1

trg

1

src

1

1

{ordered}

*

{ordered}1..*

1.

.*

left

1

rLink

0..1

right

1

lLink

0..1

leftC 0..1

rightC 0..1

1

1

0..1

0..1

0..1 1..*

{ordered}

{ordered}
0..1

prev

next

1

0..11

args

{ordered}

*

{ordered}

args *

{ordered}

:ObjectPropertyMap:TableExpression:RefItem

:TableRefExpr
order=2

tName="Registration"

:NavigLink
symbol="=>"

:NavigLink
symbol="->"

:ClassMapRef
order = 1

mark = empty

:ClassMapRef
order=3

mark = empty

navigItem navigItem navigItem

left right
 rLink lLink rLink

left right
 lLink

 RDB2OWL: A Language for Database to OWL Mapping and its Implementation 483

RDB schema information (PK-s, FK-s), finding which are source (<s>) and target (<t>)

navigation items and linking them to the corresponding ClassMap-s. The result is takes

property in the semantic metamodel, part of which is shown in Error! Reference source

not found.9. The finalizing corresponds to expanding the short form of the mapping

expressions and adding ontology and RDB schema information: from “=>Registration:-

>” to “Student[Student_ID] -> [Student_ID]Registration[Course_ID]-

>[Course_ID]Course”.

Figure 9. “=>Registration: ->” expression in the RDB2OWL semantic metamodel (part)

The RDB2OWL semantic metamodel is a more refined than the syntactic one since it

uses classes that are not used on the syntax level. For example, consider

“[[Student]][student_id]->[[S]]” annotation for personID property in Error! Reference

source not found.4. After the syntactic parsing both references [[Student]] and [[S]] are

stored as NamedRef instances in the metamodel. After the semantic processing (finding

that Student is a class and that S is variable defined in the annotation in PersonID class)

the first one is changed to become a ClassRef and the other one – the DefVarRef class

instance.

The RDB2OWL translation into D2RQ is well described e.g. in (Būmans and

Čerāns, 2016), we focus here on description of translation into the R2RML standard.

The basic RDB2OWL translation (from the semantic model) into R2RML involves

creating a triple map for every RDB2OWL class map; such a triple map shall involve

predicate object maps for all properties available in the context of the triple map subject

class. The following example demonstrates a fragment of the generated R2RML code for

the Student class from the mini-University ontology:

<#View1> rr:sqlQuery """

SELECT t.*,DPM2.MARK_RECEIVED AS "DPM2_MARK_RECEIVED"

 ,DPM3.DATE_COMPLETED AS "DPM3_DATE_COMPLETED"

 ,DPM4.VALUE AS "DPM4_VALUE"

:TableExpression

:ClassMapRef
order = 1

mark = <s>

:TableRefExpr
order=2

tName="Registration"

:ClassMapRef
order=3

mark = <t>

:NavigLink
symbol="->"

:ObjectPropertyMap
objectPropertyURI="takes"

:NavigLink
symbol="=>"

:ValueList :ValueList

:ColNameRef
colName="Student_ID"

:ColNameRef
colName="Student_ID"

:TableExpression

:ClassMap
classURI="Course"

:RefItem

:TableRefExpr
order=1

mark = <s>

tName="Course"

:RefItem

:ClassMap
classURI="Student"

navigItem navigItem
navigItem

left right

 rLink lLink rLink

left
right

 lLink

leftC

valueExpressionvalueExpression

rightC

navigItem

ref

ref

484 Būmans and Čerāns

 ,OPM1.COURSE_ID AS "OPM1_COURSE_ID"

FROM STUDENT t

LEFT OUTER JOIN REGISTRATION DPM2 ON

 t.STUDENT_ID=DPM2.STUDENT_ID

LEFT OUTER JOIN REGISTRATION DPM3 ON

 t.STUDENT_ID=DPM3.STUDENT_ID

LEFT OUTER JOIN NATIONALITY DPM4 ON t.NAT_CODE=DPM4.CODE

LEFT OUTER JOIN REGISTRATION OPM1

 ON t.STUDENT_ID=OPM1.STUDENT_ID;""".

<#TriplesMap1> a rr:TriplesMap; rr:logicalTable <#View1>;

 rr:subjectMap [

 rr:template "STUDENT/{STUDENT_ID}"; rr:class

ont:Student;];

 rr:predicateObjectMap [rr:predicate ont:hasMark;

 rr:objectMap [rr:column "DPM2_MARK_RECEIVED"]

];

 rr:predicateObjectMap [rr:predicate ont:dateCompleted;

 rr:objectMap [rr:column "DPM3_DATE_COMPLETED"]

];

 rr:predicateObjectMap [rr:predicate ont:takes;

 rr:objectMap [rr:parentTriplesMap <#TriplesMap2>;

 rr:joinCondition

 [rr:child "OPM1_COURSE_ID" ; rr:parent "COURSE_ID"]

];

It can be observed that in the case of multiple-valued properties (e.g. the object

property takes and the data properties hasMark and dateCompleted for the Student

class), the respective join expression in the view for the class map create a Cartesian

product to provide rows for all linked value combinations (so, if a student would have 10

courses taken, 10 marks and 10 completion dates, this would result in 1000 rows in the

view for the R2RML class map). The joins in the view arise from the properties included

in the class map for the Student class: each of the properties hasMark, dateCompleted

and takes introduces a join of the STUDENT table with the REGISTRATION table (cf.

Fig. 2 and Fig. 3).

To cope with this situation, the RDB2OWL translation into R2RML has a new

optimization option to generate separate triple maps for each multiple-valued data and

object property. With the optimization option no extra table links are generated if more

than one property introducing linked tables has a common domain class. In this case for

each of these properties a separate rr:TriplesMap is generated with an only one table

join: joining a table for the domain class with the table introduced by the property.

<#View1> rr:sqlQuery """

SELECT t.*, OPM1.COURSE_ID AS "OPM1_COURSE_ID"

FROM STUDENT t

LEFT OUTER JOIN REGISTRATION OPM1

 ON t.STUDENT_ID=OPM1.STUDENT_ID

; """.

<#TriplesMap1> a rr:TriplesMap;

 RDB2OWL: A Language for Database to OWL Mapping and its Implementation 485

 rr:logicalTable <#View1>;

 rr:subjectMap [

 rr:template "STUDENT/{STUDENT_ID}";

 rr:class ont:Student;

];

 rr:predicateObjectMap [rr:predicate ont:takes;

 rr:objectMap

 [rr:parentTriplesMap <#TriplesMap2>;

 rr:joinCondition [rr:child "OPM1_COURSE_ID" ;

 rr:parent "COURSE_ID"]]];.

<#View2> rr:sqlQuery """

SELECT t.*, DPM2.MARK_RECEIVED AS "DPM2_MARK_RECEIVED"

FROM STUDENT t

LEFT OUTER JOIN REGISTRATION DPM2 ON

t.STUDENT_ID=DPM2.STUDENT_ID

; """.

<#TriplesMap1_hasMark> a rr:TriplesMap;

 rr:logicalTable <#View2>;

 rr:subjectMap [

 rr:template "STUDENT/{STUDENT_ID}";

 rr:class ont:Student;

];

 rr:predicateObjectMap [rr:predicate ont:hasMark;

 rr:objectMap [rr:column "DPM2_MARK_RECEIVED"]

];.

The RDF triples created by the optimized R2RML mapping for each concrete

database would coincide with the triples created by the R2RML mapping before

optimisation. On the other hand, parallel multiple joins in the triple map views leading to

unnecessary row set explosion, are avoided.

4. Conclusions

The RDB2OWL mapping language and tool allows creation of wide range of database-

to-ontology mappings and translation these mappings into executable D2RQ and

R2RML mappings. So, the tools supporting either the D2RQ format, or the W3C

standard R2RML format, can be used to obtain either the RDF dump of the source

relational database, or an SPARQL endpoint on-the-fly serving the data from the source

relational database.

The initial experience using RDB2OWL tool over larger ontologies and RDB

schemas, for example, in Latvian medicine registries example (Barzdins et al., 2008),

has demonstrated the tool usability. RDB2OWL mapping specifications are much

smaller and easier to write than the corresponding D2RQ and R2RML code.

The newly implemented RDB2OWL to R2RML translation optimization addresses

the row set blow-up issue due to parallel multiple-valued (1-to-n) joins that can be

obtained in R2RML views during the naïve translation.

486 Būmans and Čerāns

It can be expected that further practical use cases of the proposed mapping

methodology can suggest also further translation process improvements. In this respect

we consider achieving a fully practical RDB2OWL implementation on the R2RML basis

and applying it to concrete use cases as a future work.

Acknowledgements

This article publishes a revised and extended material of the authors' presentation at the

conference 'INNOVATIONS AND CREATIVITY' held in Liepāja on April 6-7, 2018.

References

Barzdins, G., Liepins, E., Veilande M., Zviedris M. (2008). Semantic Latvia Approach in the

Medical Domain. In: Proc. 8th International Baltic Conference on Databases and

Information Systems. H.M.Haav, A.Kalja (eds.), TUT Press, pp. 89-102. (2008).

Berners-Lee, T., Hendler, J., Lassila, O. (2001). "The Semantic Web", Scientific American, May

2001, p. 29-37.

Blakeley, C. (2007). “RDF Views of SQL Data (Declarative SQL Schema to RDF Mapping)”,

OpenLink Software, 2007

Būmans, G., Čerāns, K. (2011). Advanced RDB-to-RDF/OWL Mapping Facilities in RDB2OWL

In: Proc. of BIR 2011, Riga, Latvia, October 7-8, 2011. LNBIP 90, pp. 142-157. Springer,

Heidelberg, 2011, ISBN:978-3-642-24510-7

Būmans, G., Čerāns, K. (2016). Database to Ontology Mappings in RDB2OWL: Notation and

Implementation. In: G. Arnicans, V.Arnicane, J.Borzovs, L.Niedrite (eds.), Databases and

Information Systems, IOS Press 2016, vol. 291, p. 31-42., ISBN: 978-1-61499-713-9

Calvanese, D., Cogrel, B., Komla-Ebri, S,, Lanti, D., Rezk, M., Xiao, G. (2015) How to Stay

Ontop of Your Data. In: Databases, Ontologies and More. ESWC (Satellite Events) 2015:

20-25.

Čerāns, K.. Būmans, G. (2011) RDB2OWL: a RDB-to-RDF/OWL Mapping Specification

Language. In: J.Barzdins and M.Kirikova (Eds.), Databases and Information Systems VI,

IOS Press 2011, p.139-152.

Das, S., Sundara, S., Cyganiak, R. (2012). R2RML: RDB to RDF Mapping Language.

http://www.w3.org/TR/r2rml/

Liepiņš, R. (2011). lQuery: A Model Query and Transformation Library, Scientific Papers,

University of Latvia, 2011. Vol. 770, p. 27-45.

Motik, B; Patel-Schneider P.F; Parsia B. (2012) OWL 2 Web Ontology Language Structural

Specification and Functional-Style Syntax. https://www.w3.org/TR/owl2-syntax/

Sequeda, J.F., Cunningham, C., Depena, R., Miranker, D.P. Ultrawrap (2009). Using SQL Views

for RDB2RDF. In: Poster Proceedings of the 8th International Semantic Web Conference

(ISWC2009), Chantilly, VA, USA.

Speicher, S., Arwe, J., Malhotra, A. (2014.) Linked Data Platform 1.0.

https://www.w3.org/TR/2015/REC-ldp-20150226/

WEB (a) Resource Description Framework (RDF). http://www.w3.org/RDF/

WEB (b) D2RQ. Accessing Relational Databases as Virtual RDF Graphs. http://d2rq.org/

WEB (c) Revelytix Spyder Tool (2012). http://www.revelytix.com/content/spyder

WEB (d) R2RML Parser. https://github.com/nkons/r2rml-parser

Received October 20, 2018, revised August 1, 2019, accepted October 22, 2019

http://www.w3.org/TR/r2rml/
https://www.w3.org/TR/owl2-syntax/
https://www.w3.org/TR/2015/REC-ldp-20150226/
http://www.w3.org/RDF/
https://github.com/nkons/r2rml-parser

