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Abstract: Geoid/quasi-geoid modelling in a local (small) area is often made with polynomials. The 

optimal version of a polynomial is found by testing its successive versions using different statistical 

parameters, i.e. with different degree and number of coefficients. In this publication, the authors 

presented 3 approaches to search for an optimal version of the polynomial. Two of them were based 

on one of the robust estimation methods, i.e. the Danish method. Therefore, the question arises 

whether this method is suitable for this type of work. 

       The publication analyses 6 different methods of robust estimation and the method of least 

squares. The control parameters of the methods were selected in such a way as to obtain a comparable 

accuracy of fitting the polynomial into the points each time. Then, the actual accuracy obtained for 

each of them was compared. The result of the study is a ranking of methods in terms of the most 

accurate fitting results.  

Keywords: geodesy, geoscience, detection algorithms, numerical analysis, geoid, model selection 

criteria 

1. Introduction 

In most cases, it is not possible to measure processes over a large area with high accuracy. 

For this reason, at selected locations, a process is precisely determined and then 

approximated to the desired surface. There are two related issues: selection of the 

appropriate model, i.e. the approximation function and its optimisation. Optimisation should 

be understood as the selection and development of function parameters in such a way that 

they approximate the studied process as accurately as possible. Therefore, it is important to 

remove or minimise gross errors that disrupt the model. In geodesy, prominent fields of 

study are connected with the above question, i.e. modelling the shape of the earth (a geoid). 

Despite the development of surface measurements, including satellite measurements (Godah 

and Kryński, 2011; Pail et al., 2010), ground measurements (gravimetry, GNSS) are still the 

basis for its precise determination. 

The above principle is even more visible when we model a quasi-geoid or a figure of 

Earth according to the theory of Molodensky (Molodensky, 1958; Molodensky et al., 1962). 

In this case, surface measurements are not necessary, but only precise measurements in a 

finite number of points. This is related to the renouncement of Bouger's gravimetric 
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correction (large-surface measurements) in favour of freeair (measurements in points) 

(Czarnecki, 2010). The discussion on which of the reference surfaces is "better" is still 

ongoing (Vaníček et al., 2012; Sjoberg, 2013) and is not the subject of the article.  

Another type of surface requiring optimisation is the model of transformation of height 

systems. Currently (2019-2020) in Poland there is a change from Kronstadt'86 (zero point - 

Kronstadt, Russian Federation) to PL-EVRF2007-NH (Amsterdam, the Netherlands) 

(Ordinance, 2012). 

2. Examination of the geoid 

Geoid/quasi-geoid models can be developed for local, regional, or global areas. For local 

one's undulation is determined by set of points using satellite levelling (1a, 1b), but other 

methods are also available. Orthometric (H
o
) or normal (H

n
) heights are taken from geodetic 

vertical network. The ellipsoidal heights are taken from satellite measurements. The 

difference (undulation) can be determined at points on the ground, acting as ground survey 

markers. It can also be determined in place of GNSS permanent stations, but this requires 

the determination of their orthometric or normal heights. The use of direct levelling (spirit 

levelling) is often difficult or even impossible in this case. Hence, indirect methods are 

applied (Borowski and Banasik, 2011). Although the ellipsoidal heights of stations change 

over time (Haritonova et al., 2015; Maciuk and Szombara, 2018), the undulation values are 

considered relatively constant (Banasik, 1999; Czarnecki, 2010). 

 

     𝑵 = 𝒉 − 𝑯𝒐                (1a) 

 

𝜻 = 𝒉 − 𝑯𝒏               (1b) 

Where: 

𝑵 , 𝜻 – undulation or distance between quasi-geoid and ellipsoid, 

𝑯𝒐 , 𝑯𝒏 – orthometric, normal height, 

𝒉 – ellipsoid heights. 

Surface model is done by fitting in those points approximate function. Sometimes an 

interpolation as a second way of fitting is mentioned. Because it is a special case of 

approximation (Fortuna et al., 1993), this issue is being omitted. Different types of 

functions can be selected for approximation. Commonly used are orthogonal and non-

orthogonal polynomials. A non-orthogonal polynomial for ∀n ∈ Ν according to the 

variables x and y can be written as follows: 

 

              (2)            

 

Where: 

– searched value e.g. undulation, 

– polynomial coefficient, 

– coordinates of the points in planar system. 

For relatively local (small) areas plan coordinates are used. Inaccurate information on 

the location of a point (even up to 100 m) from a certain XY value does not significantly 

influence such a model (Banasik et al., 2012). The impact of mapping distortion is therefore 

negligible. The polynomial itself can be of any degree, but for local areas the polynomial of 
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degree 3 and lower is commonly used. For larger areas or more differentiation surface the 

area is divided into samples and polynomial spline is used (Walo, 2000). In table 1 the full 

form of non-orthogonal polynomial of 1st, 2nd and 3rd degree is presented. 

 

Table 1. Polynomial models 

  

ID Degree Polynomial model 

PM1 1 𝑁 = 𝑎00 + 𝑎10𝑥 + 𝑎01𝑦 

PM2 2 𝑁 = 𝑎00 + 𝑎10𝑥 + 𝑎01𝑦 + 𝑎11𝑥𝑦 + 𝑎20𝑥
2 + 𝑎02𝑦

2 

PM3 3 𝑁 = 𝑎00 + 𝑎10𝑥 + 𝑎01𝑦 + 𝑎11𝑥𝑦 + 𝑎20𝑥
2 + 𝑎02𝑦

2 + 𝑎21𝑥
2𝑦 + 𝑎12𝑥𝑦

2

+ 𝑎30𝑥
3 + 𝑎03𝑦

3 

 

The determination of the 𝒂𝒊𝒋 coefficients is performed on the basis of the correction 

equations in the form of (3) and (4), through the solution commonly used in geodesy with 

the least squares method (5). The weights for individual points can be taken in many ways. 

The simplest way is to take a fixed value for all points (𝒑𝒊 = 𝟏). Another way is to estimate 

a priori the weight of each point, e.g. depending on the length of the GNSS session or the 

class of a point (Pażus et al., 2002). Another possibility is to use the robust estimation 

method, which allows testing each point for a gross error. Those points, for which the 

model residuals do not meet the assumed conditions, have their weights reduced in the 

iterative process, and the calculation process starts from the beginning. This is the main part 

of the publication, which is presented in more detail in Chapter 4. 

 

𝒗 = 𝑨𝒙 − 𝒍                  (3) 

 

𝒍 = [
𝑁1
⋮
𝑁𝑛

] = [
ℎ1 − 𝐻1

⋮
ℎ𝑛 − 𝐻𝑛

]                  (4) 

Where: 

𝒗 – corrections vector, 

𝒍 – undulation vector from satellite levelling (1), 

𝑨 – coefficients matrix with unknown - part x and y of equation (2), 

𝒙 – vector of polynomial coefficients 𝑎𝑖𝑗 . 

 

𝒙 = (𝑨𝑻𝑷𝑨)−𝟏 ∙ 𝑨𝑻𝑷𝒍              (5) 

Where: 

𝒙 – calculated (estimated) polynomial coefficients 𝑎𝑖𝑗 , 

𝑷 – matrix of weights of individual points. 

Since the baseline model does not have to explain best the course of a geoid/quasi-geoid 

in a given area, further examination is possible. The model is then recalculated in a different 

form of polynomial and compared to its predecessor. Different types of statistical tests are 

used. The selected options are presented below. The authors omitted the hybrid adjustment 
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approach from geometric and physical observations, developed e.g. in DFHRS project 

(Ameti and Jager, 2016; Jäger, 2006, 2013), as a too far away from the article scope. 

2.1. The Walo method 

In Walo's paper, the total application of satellite levelling and vertical line deviation was 

assumed (Walo, 2000). Thus, the system of corrections (3) was extended to two systems of 

linear equations (6), (7) which after some transformations can be described as equations of 

errors of observed values (undulations and plumb line deflections) and fictional errors of 

observation. The main part of the method is the way of selection of polynomial. Walo 

adopted the study from full forms of the 1st-degree polynomial to "3+" (splines based on 

3rd-degree polynomial). The Danish (Krarup et al., 1980) method was used to minimise 

gross errors. The parameter comparing subsequent forms of the polynomial was F-test (8), 

consisting in the verification of the hypothesis on the equality of variance of two 

populations of H0 (�̂�1
2 = �̂�2

2), of different degrees of freedom (v1, v2) with the assumed 

level of confidence p=0.95. It is assumed that the estimators are subject to chi-square 

distribution. 

 

 𝑣𝑖 = 𝑁
𝑜(𝑥𝑘 , 𝑦𝑙) + ∑ ∑ 𝑎𝑘𝑙𝑥

𝑘𝑚−𝑘
𝑙=0 𝑦𝑙𝑚

𝑘=0 − 𝑁(𝑥𝑘 , 𝑦𝑙)                           (6) 

 

𝑣𝑗 = ∑ ∑ 𝑘𝑎𝑘𝑙𝑥
𝑘−1𝑚−𝑘

𝑙=0 𝑦𝑙𝑐𝑜𝑠𝐴 −𝑚
𝑘=1 ∑ ∑ 𝑙𝑎𝑘𝑙𝑥

𝑘𝑚−𝑘
𝑙=1 𝑦𝑙−1𝑠𝑖𝑛𝐴 −𝑚

𝑘=0 Θ𝐴(𝑥𝑗 , 𝑦𝑗)        (7) 

 

 𝐹 =
�̂�1
2

�̂�2
2 ≤ 𝐹(𝑝, 𝑣1, 𝑣2)                                       (8) 

Where: 

𝑁(𝑥𝑘 , 𝑦𝑙) – the height of the geoid at Pi point of the coordinates (xk,yl), 

𝑁𝑜(𝑥𝑘 , 𝑦𝑙) – the height of the geoid from the reference model (usually gravimetric), 

Θ𝑜(𝑥𝑗 , 𝑦𝑗) – the vertical deviation in azimuth A at the point Pj of the coordinates (xj,yj), 

𝐴 – the azimuth of vertical deviation at the Pj point, 

𝑎𝑘𝑙  – the parameter of the approximation polynomial, 

𝑚 – the degree of polynomial, 

�̂�1
2, �̂�2

2 – unit variance of subsequent polynomial models. 

The tests were carried out for 4 samples (areas) of the surface area ranging from 

44.2x47.8km (A1), 96x128km, 63x83km to 152x67km. The test results showed that in 

every test the appropriate approximation function is a spline based on a polynomial of 3rd 

degree. The only exception was in the smallest area, for which additional tests related to the 

appropriate density of points were performed. In the case of the lowest studied density of 

points, F-test indicated the polynomial of 3rd degree. This was due to the relatively low 

number of freedom degrees (only 2 for "3+"), and thus relatively high critical value of Fmin. 

2.2. The Zhong method 

A different method is presented in Zhong's paper (Zhong, 1997). In this case, an output full 

version of the polynomial, e.g. of 2nd degree, is assumed. The system of equations (3) (4) is 

solved with the use of the Danish method. Then the significance of each polynomial 

coefficient (�̂�𝑖) is determined using a test based on its cofactor (𝑞𝑥𝑖𝑥𝑖,) and the estimate of 

unit weight variance in the complete model (�̂�0) (9). 
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 𝐹𝑖 =
𝑥𝑖
2

�̂�0
2∙𝑞�̂�𝑖�̂�𝑖

~�̃�1,𝑟 (9) 

 

Another (new) model is developed without the minimum significant ratio Fmin (9). It is 

then compared with the output by using 5 parameters (10-14). The procedure is repeated 

until the parameters reach the minimum value. 

 

𝑅𝑀𝑆 =
�̂�𝑻𝑷�̂�

𝑛−𝑡
= 𝜎0

2 → 𝑚𝑖𝑛               (10) 

 

𝑣𝑝 = (𝑛 + 𝑡)𝑅𝑀𝑆 → 𝑚𝑖𝑛               (11) 

 

𝑆𝑝 =
1

𝑛−𝑡−1
𝑅𝑀𝑆 → 𝑚𝑖𝑛               (12) 

 

𝐶𝑝 =
�̂�𝑻𝑷�̂�

�̂�0
2 − (𝑛 − 2𝑡) → 𝑚𝑖𝑛              (13) 

 

𝐴𝐼𝐶 = n ∙ 𝑙𝑛(�̂�𝑷�̂�) + 2𝑡 → 𝑚𝑖𝑛             (14) 

 

where: 

RMS  – residual mean squares 

𝑣𝑝 – variance of interpolation biases, 

AIC – the so-called “Akaike Information Amount” 

𝐶𝑝 – a specially defined statistic variable, 

𝑆𝑝 – mean mean-square interpolation error, 

n – number of the data points, 

t – number of the unknown model parameters, 

�̂�𝑻𝑷�̂� – the sum of the weighted residual square. 

�̂�0
2 – the estimate of unit weight variance in the complete model. 

The tests were carried out for a relatively small area of 3.0x7.0 km containing 13 points 

and 12 points for method validation. The initial model was the full polynomial of the 2nd 

degree (6 coefficients). In other studies the method was used for 20x30 km (Banasik, 1999; 

Borowski, 2015). 

2.3. Tusat and Mikailsoy investigation 

The search for suitable parameters to develop a polynomial can be found in the paper of 

Tusat and Mikailsoy (Tusat and Mikailsoy, 2018). The authors tested 5 different models of 

the polynomial: three full models (of 1st, 2nd and 3rd degree) and two intermediate models 

(of 2nd and 3rd degree reduced). To compare the subsequent models 10 statistical 

parameters were used: sum of squared errors (ESS), root mean-squared error (RMSE), 

coefficient of determination (R2), adjusted R-squared (Radj
2 ), mean absolute percentage 

error (MAPE), Willmott's index agreement (D), confidence index (C), Theil's forecast 

accuracy coefficient (UI), Snedecor F-test (F) and Akaike information criterion (AIC). Due 

to the significant volume of equations, only selected parameters were presented, i.e. Radj
2  

(15), D (16), C (17) and UI (18). Optimisation of each model was made by iterative 
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Levenberg-Marquardt algorithm (LMA) with step length Δ=0.1. The models were 

developed on 33 points, spread over an area of about 25x30 km. 

Finally, 5 parameters indicated a model of 3rd degree (ESS, R2, D, C, UI) and 4 

parameters for no. 2 (RMSE, Radj
2 , AIC, F). The authors found the results to be ambiguous. 

There is C parameter that indicates a 3rd degree, which is dependent on D and R^2. 

Decreasing the number of points to 25 and reworking the models indicated a polynomial of 

2nd degree. 

 

       𝑅𝑎𝑑𝑗
2 = 1 −

𝐸𝑆𝑆

𝑇𝑆𝑆
∗
𝑛−1

𝑛−𝑝
              (15) 

 

 𝐷 = 1.0 −
𝐸𝑆𝑆

∑ (|𝑢𝑖−𝑢|−|𝑢𝑖−𝑢|)
2𝑛

𝑖=1

            (16) 

 

𝐶 = 𝐷√𝑅2             (17) 

 

      𝑈𝐼 =
√∑ (𝑢𝑖−𝑢𝑖)

2𝑛
𝑖=1

√∑ 𝑢𝑖
2𝑛

𝑖=1 +√∑ 𝑢𝑖
2𝑛

𝑖=1

             (18) 

Where: 

𝐸𝑆𝑆, 𝑇𝑆𝑆 – sum of squared errors, total sum of squares; 

𝑛, 𝑝  – number of points, number of coefficients. 

3. Robust estimation methods 

The methods used in this paper to identify the coefficients of the method model are derived 

from a broad class of M-estimations (Jäger and González, 2006; Jäger et al., 2005). Huber, 

Hampel, Danish, Gaździcki, IGG3 and Andrews methods were used for calculations. The 

estimation of polynomial coefficients was carried out with the use of the least squares 

method with iterative change of weights. In order to make it possible to compare the results, 

the control parameters were adopted in such a way as to obtain 95% efficiency in relation to 

the standard normal distribution (Banaś and Ligas, 2014). 

3.1. The Huber method 

A very popular and one of the first methods used for the robust adjustment of observations 

is the Huber method presented for the first time by P.J. Huber in his paper (Huber, 1964). It 

was developed as a result of the combination of the least squares method and the minimum 

average deviation method. The iterative modification of weights follows the formula below: 

 

p̂
i
= {

     p
i
       for |vi| ≤ f 

p
i

f

|vi|
    for |vi| > f

              (19) 

 

Where: 

pi – weight of the i-th observation from the previous iteration (in the first calculation 

step taken from the least squares method), 
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p̂i – modified weight used in the next iteration, 

vi – calculated adjustment to the observation, 

f – control parameter, determining the range of acceptable values of adjustments v. The 

value of this parameter for the method assuming the above-mentioned efficiency is 1.345. 

 

 

 
Fig. 1. Weight function diagram for the Huber method 

 

The weight of the observations in the iterative process is unchanged if the standardised 

adjustment estimator v̅i is within the limits set by parameter f. Otherwise the value of the 

weight is reduced according to the damping function (Fig. 1). 

3.2. The Hampel method 

The Hampel method was developed as an extension of the Huber method and proposed in 

Hampel's paper (Hampel, 1974). It also leads to a reduction in weight for observations with 

a gross error. In comparison to the Huber method, 2 intermediate intervals (left and right of 

the permissible range) were additionally introduced. In this method the weight function has 

a form: 

p̂
i
= 

{
 
 

 
 

 pi              for |vi| ≤f

     
pi  f

|vi|
           for f < |vi| ≤ g

 
pi f 

h- |vi|

h-g
 

|vi|
    for g < |vi| ≤ h

    0              for |vi| > h 

             (20) 

 

Where: 

p
i
 – weight of the i-th observation from the previous iteration (in the first calculation 

step taken from the least squares method), 

p̂i – modified weight used in the next iteration, 

vi - calculated adjustment to the observation, 

f, g, h – control parameters determining the limits of additional compartments 

characterised by a different way of weight modification. In order to achieve the assumed 

efficiency, the following control parameters were assumed in sequence, i.e. 1.7, 3.4, 8.5. 
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Fig. 2. Weight function diagram for the Hampel method 

 

3.3. The IGG3 method 

This method was proposed by Yang (Yang, 1991, 1994). It is a modification of the Hampel 

method. The weight function of the IGG3 method is based on three ranges. A standardised 

adjustment qualifying for the first range does not change the weight from the previous 

iteration. In the second range there is a smooth weight damping. If the adjustment exceeds 

the value of the second control parameter, the observation to which it refers will get a 

weight equal to 0 in the next iteration. Values of control parameters are constant and depend 

on the current distribution. In this paper, in order to obtain the assumed efficiency, the 

parameter g=1.75 and h=8 have been adopted. 

 

p̂
i
= 

{
 

 
    p

i
                   for |vi| ≤ g

p
i
 

g

|vi|
(

h-|vi|

h-g
)

2

    for g < |vi| ≤ h

    0                   for |vi| > h

             (21) 

 

Where: 

p
i
 – weight of the i-th observation from the previous iteration, 

p̂i – modified weight, 

vi – standardised observation deviation, 

g, h – control parameters. 

 

 
 

Fig. 3. Weight function diagram for the IGG3 method 
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3.4. The Gaździcki method 

It was created as a development of the Danish method (Gaździcki, 1985). Calculations are 

performed with the modified least squares method using an equivalent weight matrix (eq. 

29). The damping function in this method is in the following form: 

 

t(vi) = (1+ 
vi-f

f(vi)
 

2(1- PG)

PG(g-f)
2 ∫ f(v)dv

g

f
)

-1

             (22) 

 

Where: 

f(vi) = 
1

√2π
exp (-

vi
2

2
) – density function of the standardised normal distribution 

PG – probability that the value of adjustment vi is not caused by a gross error in another 

observation 

∫ f(v)
g

f
dv – probability that vi will assume a value between <f;g>, and the scales are 

modified according to the formula: 

 

p̂
i
= {

 p
i
        for |vi|<f

p
i
t(vi)   for f≤|vi|<g

  0         for |vi|≥g

              (23) 

 

Where: 

t(vi) – damping function, 

p̂
i
 – modified weight, 

vi – standardised residual of the model, 

f, g –control parameters determining the boundaries of additional intervals characterised 

by a different way of modifying the weights. Values of these parameters were adopted as 

f=1.5, g=3.0, P
G
=0.5. 

 

 
 

Fig. 4 Weight function diagram for the Gaździcki method 
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3.5. The Danish method 

The idea of the Danish method belongs to a Danish mathematician, physicist and geodesist, 

i.e. Torben Krarup. The weighting function in this method is as follows (Krarup et al., 

1980): 

 ip̂ g

i

l v k

i

p for v k;k

p e for v k
 

  
 

              
 

Control parameters l and g are usually within a range from 0.01 to 0.1 and g = 2.  

In this work, the value was set as l=0.1, g=2, k=2. 

 

 
 

Fig. 5 Weight function diagram for the Danish method 

3.6. The Andrews method 

The weight function of the Andrews method is widely used. It was introduced in 1972 

(Andrews et al., 1972) in a well-known study called the Pronceton Robustness Study. The 

form of the weight function is based on the trigonometric sine function and can be presented 

as follows: 

 

ip̂

sin

0

i

i

i

i

v

c
for v c;c

v

c

for v c

  
 
   

 



    
 

In order to obtain the efficiency at the level of 95% in relation to the standard normal 

distribution, the c parameter of 1.34 was adopted. 

 

(24) 

(25) 
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Fig. 6. Weight function diagram for the Andrews method 

4. The test assumptions 

To perform the test of robust estimation methods, 5 areas were selected, being the second 

level of administrative division of Poland (powiats/counties). The points were taken from 

the national basic levelling network, for which the distance between the ellipsoid and the 

geoid (ζ) was taken from the quasi-geoid model PL-geoid-2011 (Kadaj and Świętoń, 

2014). Then polynomial of the 2nd degree was fitted in the points. On its basis the values of 

the distance (𝜻𝒒−𝒂𝒅𝒋) without unknown random and gross errors were determined. They 

were replaced by random and gross errors (26). Each of the counties is characterised by a 

different number of points (from 52 to 225) and their spatial distribution (Fig. 7). The noise 

(mne) was introduced for each of the points, using a single sampling based on a generator 

built in Python 3.6 (BSD license - permissive free software license, which is compatible with the GNU 

General Public License (GPL)). Gross errors (mge) were introduced gradually from 5% to 40% of 

all points. In this way 8 degrees of error load were obtained for each of 5 counties. The 

values of the gross errors were increased with the successive levels of sample load (Fig. 8). 

 

𝜻𝒏𝒆+𝒈𝒆(𝒙𝒊, 𝒚𝒊) = 𝜻𝒒−𝒂𝒅𝒋 +𝒎𝒏𝒆 +𝒎𝒈𝒆             (26) 

Where: 

𝜻𝒆(𝒙𝒊, 𝒚𝒊) – value of the distance between the ellipsoid and the quasi-geoid loaded with 

errors, 

𝒙𝒊, 𝒚𝒊 – coordinates of points in a two-dimensional coordinate system 1992, 

𝜻𝒒−𝒂𝒅𝒋 – distance values "cleaned" of thick and systematic errors, 

𝒎𝒏𝒆 – random error (noise) from 〈−𝟒, 𝟒〉 mm, 

𝒎𝒈𝒆 – gross error with values from 〈−𝒌 ∗ 𝟒, 𝒌 ∗ 𝟒〉 mm, where 𝒌𝝐〈𝟎, 𝟔〉. 

 

Fig. 7. An example of the points distribution for the area A (52 points) and B (225 points). 
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Fig. 8. Distribution of gross errors grouped into three value ranges: 4-8mm (blue), 

12-16mm (red) and 20-24mm (grey). 

5. Results 

The tests covered 5 areas with 8 levels of frequencies of gross errors. For the purpose of 

comparison, LS and 6 methods of robust estimation were used. In total, thus, 280 models 

were developed. The main aim of the study is to indicate which methods give the results as 

close as possible to the actual ones. Two sets of data were analysed. Variant I contains a 

comparison of the model with error-loaded data (26). Variant II: comparison of the model 

with error-free ("pure") values. The test areas have different number of points, which affects 

the analysis of the results. For this reason, the average absolute error (AAE) (27), calculated 

for every method, area and level of error, was used as the measure of error. On this basis, 

the sum of average absolute error (SAAE) (28) from all areas was calculated for every 

method. In this way, a measure of error was obtained for each level of the number of gross 

errors, with the number of points agreed upon. The final measure is the total sum of average 

absolute error (29), i.e. the total sum of average absolute error of all levels. 

 

𝐀𝐀𝐄 =
∑ |𝜻𝒊

𝒎𝒐𝒅𝒆𝒍−𝜻𝒊
𝒏𝒆+𝒈𝒆

|𝒏
𝒊=𝟏

𝒏
              (27) 

 

𝐒𝐀𝐀𝐄 = ∑ 𝐀𝐀𝐄𝟓
𝒋=𝟏                (28) 

 

𝐓𝐒𝐀𝐀𝐄 = ∑ 𝒔𝒅𝒍
𝟖
𝒍=𝟏                (29) 

 

Where: 

𝜻 – the distance from the ellipsoid to the quasi-geoid between the model (model) and the 

data: error-loaded (ne+ge) or primary (q-adj); 

n, j, l  – number (in order): points in the area, areas, degrees of input errors; 

The SAAE distribution for variant I is shown in Figure 9. In the methods, the control 

parameters were selected in such a way as to ensure that the accuracy of the obtained results 

was similar (Chapter 5.1). The SAAE merging for all methods is clearly visible (Fig. 9). 
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The differences between them are at the level of 2 orders of magnitude below the relevant 

results. They can therefore be considered negligible. The same applies to methods that use 

root mean square error (RMSE) as a measure of error.  

It was demonstrated with variant I that all methods were brought together to ensure the 

same level of accuracy of fitting the functions. In case of lack of information on actual 

errors in the points, it could be concluded that the tested methods fit the functions equally 

well to the data. Information on these errors is included in variant II. The distribution of 

SAAE is shown in Figure 10. In this variant, the results obtained do not overlap. Clear 

differences are visible, especially between the extreme values - the largest in least squares 

and the smallest errors in the Huber method. The largest errors in robust estimation methods 

are obtained when using the Danish method. This is not a surprise - similar results have 

already been obtained (Borowski and Banaś, 2018). Between them there are 4 remaining 

methods. The ranking of these methods is less clear; mainly due to the Andrews method, 

which performs worse with fewer gross errors. However, with the increase in numbers, its 

effectiveness increases in comparison to other methods (Hampel, Gaździcki and IGG3). It is 

possible that the reason for this is the feature, i.e. the weighting of all points. In this method, 

each observation characterised by an adjustment from the range modifying the weight 

obtains it. This method is the only one of the tested groups based on trigonometric function, 

i.e. sine function. Thus, the ranking of these 4 methods is the result of the selection of the 

ranking criterion. If TSAAE (29) is used, the Hampel method achieves a better result, then 

at a comparable level the IGG3 and the Andrews methods, and then the Gaździcki method 

(Table 2). With the increase in the number of gross errors, the Andrews method came out 

ahead of the Hampel method. In the tested sample, the limit value is 30% of the gross errors 

in the sample. 

It should be noted that the methods gave different results with a 5% error level, and they 

gave similar results with a 10% error level. The first level, i.e. 5%, is loaded with a 

negligible number of errors of significant value. In most cases, the error is at the maximum 

noise level. For the level of 10%, there are also higher values of gross errors (3-4 times the 

maximum noise value). It can, therefore be pointed out that for a small number of outliers, 

similar values are obtained regardless of the used method. The exception is LS, which is the 

result of the lack of damping of these observations. As the number (and thus the magnitude) 

of gross errors increases, the methods give different results. The convergence of the 

Hampel, IGG3 and Andrews methods was obtained for 30% of errors. 

A summary and ranking of the tested methods is given in Table 2. There was a slight 

difference in TSAAE between IGG3 and Andrews, so it was qualified in one position. 

 

Fig. 9. The accuracy of fitting the 2nd degree polynomial to data with gross 

errors: vertical axis - equivalent to TSAAE [cm], horizontal axis - percentage of 

gross errors in the data set [%]. 
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Fig. 10. The accuracy of fitting using robust estimation methods: vertical axis - total sum of average 

absolute error (TSAAE) [cm], horizontal axis - percentage of gross errors in the data set [%]. 

 

 

Table 2. A comparison of total sum of average errors of the methods for the test sample in cm and in 

relation to the Huber method in percent, as well as a ranking of methods. 

 

Method 

Result of analysis 

TSAAE  
[cm] (28) 

TSAAE 

relatively [%] 

Rank 

LS 7.49 70.2% 7 

Huber 4.40 0.0% 1 

Hampel 5.05 14.8% 2 

Danish 6.55 48.9% 6 

Gaździcki 5.83 32.5% 5 

IGG3 5.19 18.0% 3 

Andrews 5.20 18.2% 3 

6. Conclusions 

The calculations and thus the analysis of the methods were carried out under the assumption 

that the parameters were selected in such a way as to maintain 95% efficiency in relation to 

the standard normal distribution. For different "steering parameters" final conclusions might 

be different. It is important to mention that usually various values are used depending on 

authors experiences. 
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As a general conclusion, the authors recommend using robust estimation methods to 

express surface rather than “standard” least-square method. In performed tests almost every 

time the results were better when robust estimation was used. Especially when number of 

gross errors was relatively high. Standard least-squares was better than some robust 

methods only when number of gross was relatively small and more important its value 

comparable to introduced “noise” errors. This is not a surprise. Other analysis confirm the 

same conclusion (Borowski and Banaś, 2018). 

The Danish method was applied in two cases in the quoted studies on local geoid/quasi-

geoid modelling. In our analyses this method turned out to be the worst (except the least 

squares method), i.e. it was used to obtain the highest sum of real errors. Compared to the 

best method that was analysed (Huber), it gives an error greater by almost 50%. The 

ranking of the effectiveness of the methods is presented in Table 3. 

The last conclusion is the suggestion to analyse the methods based on the control 

parameters recommended by their authors. This will create a situation where the assumed 

effectiveness of estimators at the level of 95% will not be maintained, but it will enable 

comparison of the effects of the methods functioning in real conditions applied on a daily 

basis. 
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