
Baltic J. Modern Computing, Vol. 8 (2020), No. 1, pp. 21–47
https://doi.org/10.22364/bjmc.2020.8.1.02

Handling Evolution in Big Data Architectures

Darja SOLODOVNIKOVA, Laila NIEDRITE

Faculty of Computing, University of Latvia, Riga, Latvia

{darja.solodovnikova, laila.niedrite}@lu.lv

Abstract. One of the purposes of Big Data systems is to support analysis of data gathered from
heterogeneous data sources. Since data warehouses have been used to achieve the same goal, they
could be leveraged also to provide analysis of Big Data. The problem of adapting data warehouse
data and schemata to changes in user requirements and data sources has been studied by many
researchers worldwide. However, innovative methods must be developed also to support evolution
in Big Data systems. In this paper, we analyze architectures designed for Big Data processing and
analysis described in the literature with the purpose to identify the most appropriate solution for
the evolution problem. We concentrate on four architecture types: data lakes, virtual integration,
polystores, and λ-architecture, and, in addition to them, we consider solutions that apply data
warehouse/OLAP methods to Big Data processing and analysis. Finally, we describe our proposal
of an architecture that allows to perform different kinds of analytical tasks on Big Data retrieved
from multiple heterogeneous data sources with different latency and is capable of processing
changes in data sources as well as evolving analysis requirements.

Keywords: Big Data, Architecture, Data Warehouse, Metadata, Evolution

1 Introduction

Data warehouses (DW) and OLAP methods have been used for several decades to sup-
port analysis of structured data sets and, therefore, many solutions to known research
problems have been developed in the context of traditional relational database environ-
ments. One of such problems is a data warehouse evolution that occurs due to changes
in business requirements or data sources or improvements of a data warehouse design.
There are in general two approaches to solving evolution problems. One approach is
to adapt just the existing data warehouse schema (Bentayeb et al., 2008) or ETL pro-
cesses (Wojciechowski, 2018) without keeping the history of changes and another ap-
proach (Ahmed et al., 2014; Golfarelli et al., 2006; Malinowski and Zimnyi, 2008) is to
maintain multiple versions of schema that are valid during some period of time. Futher-
more, several studies (Thakur and Gosain, 2011; Thenmozhi and Vivekanandan, 2014;
Solodovnikova et al., 2015) propose solutions to the formalization of requirements of a
data warehouse and treatment of their evolution.



22 Solodovnikova and Niedrite

Recently, due to the increase in the volume and heterogeneity of data that needs to
be processed and analyzed, Big Data technologies (Shvachko et al., 2010) have emerged
that use distributed data storage methods and process data in parallel. The demand to
analyze data stored in such systems is increasing and one of the analysis options is to use
data warehousing. Open Big Data challenges and research directions have been outlined
in several recent articles (Abaker et al., 2014; Ceravolo et al., 2018; Cuzzocrea et al.,
2013; Kaisler et al., 2013; Holubov et al., 2019). The authors of the paper (Kaisler et
al., 2013) mention dynamic design challenges for big data applications, which include
data expansion that occurs when data becomes more detailed. Another review paper
(Cuzzocrea et al., 2013) is more specific and indicates research directions in the field
of data warehousing and OLAP. Among others, the authors also mention the problem
of designing OLAP cubes according to user requirements. In the paper (Ceravolo et al.,
2018) the authors state that detecting data and structural changes and handling them in a
Big Data system is a complex task that requires further research. Another recent vision
paper (Holubov et al., 2019) analyses research challenges in multi-model environments
and suggests that efficient management of schema evolution and propogation of schema
changes to affected parts of the system is a complex task and one of the topical issues.

One of the decisions that must be made when solutions to the evolution problems
are developed is regarding the choice of the appropriate software architecture for Big
Data processing and analysis. For now the research articles and practical projects offer
architectures that mainly can be classified into four groups (Stefanowski et al., 2017):
data lakes, virtual integration architectures, polystores, and λ-architecture (Marz and
Warren, 2013).

Data Lake is for now the most popular architecture type. The data lake supports a
physical integration of big data. All data produced in an organization are collected in
one single place without any processing. Data Lake stores heterogeneous data in their
original formats and granularity. Because of data loads from the sources to the lake,
keeping the data up to date becomes a problem in the Data Lake. Another problem
is to provide to the user the analysis possibility over heterogeneous data, what causes
well-known problems from the data integration field, for example data semantics, data
quality and others. These problems become more complex in the Data Lake because of
characteristics of big data. Metadata can help to find solutions for these problems.

Virtual architecture supports virtual integration; it is not intended for physical data
transfer from sources to a common repository. The architecture provides a global view
over the data sources. Because the data are left in the data stores, they have not latency
problems, however, different problems become topical, for example, the queries in such
virtual architecture are more slowly and complex.

Polystore architecture is built specially for Big Data, unlike the data lake that has
similarities with data warehouses or virtual architecture that can be considered as an in-
heritor of federated architectures from 90-ties. Polystore was introduced in 2015 (Dug-
gan et al., 2015). The main idea is that the architecture consists of islands that are con-
structs for storing data of the same type, for example, relational island stores relational
data, but text data are stored in text island. The island has a common data model and
query language. The data, when it is optimal and technically supported, can be moved



Handling Evolution in Big Data Architectures 23

from one island to another. More detailed information about this architecture type is
given in this paper in description of particular systems from this architecture type.

λ-architecture is composed of three layers. In the batch layer massive volumes of
data are periodically obtained from data sources and batch views are precomputed on
source data. Processed data from these batch views is accessible to queries via the serv-
ing layer. Since batch views are augmented only periodically and real-time data may
be necessary for analysis, the speed layer is responsible for ingestion and processing of
data that is missing in batch views.

The implementation of different architecture types for big data usually provide the
data storage in distributed file systems, for example HDFS, and the data parallel pro-
cessing by Map Reduce. However, these architecture types are quite different, therefore
particular components of architectures can be implemented by means of very different
techniques, tools, methods, databases etc. Technology vendors such as IBM, Oracle,
SAP, and Microsoft provide cloud and on-premise platforms for management and anal-
ysis of Big Data, but in our study, we concentrate on selective solutions based on open
source tools and technologies.

The contribution of this paper is twofold. First, it performs a comparative analysis
of selective existing solutions to Big Data processing and analysis available in the liter-
ature with the purpose to evaluate the appropriateness of existing Big Data approaches
for the development of a system with evolution support. For each approach, the paper
discusses a chosen architecture, support of Big Data evolution, metadata and technolo-
gies used in the implementation. Second, we propose an architecture that allows to store
and process structured and unstructured data at different levels of detail, analyze them
using OLAP capabilities and semi-automatically manage changes in requirements and
data expansion. The operation of the architecture components responsible for OLAP
analysis and evolution handling is based on the metadata described in the paper.

The rest of the paper is organized as follows. In Section 2 our research questions
are discussed. In Section 3 the architectures analyzed in this study are classified and
explained in detail. In Section 4 the approaches applied in the architectures to support
evolution and metadata that are used in each architecture are discussed. We conclude
with directions for future work in Section 4.

2 Research Questions

This paper aims to explore architectures that are used for Big Data processing with the
purpose to evaluate their abilities to provide evolution support. A number of research
questions are raised in our study to understand the composition of different architec-
tures, including the use of data warehouses and metadata, and whether solutions to
support evolution are included into these architectures.

RQ1 What specific architectures are proposed for each type of Big Data architec-
tures, which solutions do they leverage? For the research, we selected papers that pro-
pose distinctive architectures corresponding to architecture type classification defined
in the paper (Stefanowski et al., 2017): data lakes, virtual integration architectures, and
polystores.



24 Solodovnikova and Niedrite

RQ2 What is the role of data warehouses in Big Data architectures? One of the
options for architecture development for evolution support is to use the experience and
solutions that exist in a data warehousing field, so it is also necessary to determine
whether data warehouses are incorporated into Big Data architectures. Therefore, pa-
pers that propose data warehouse as an architecture component were also selected for
our study.

RQ3 How evolution is understood in Big Data architectures, which methods are
proposed to support evolution? In our study, we also explored architectures that were
discussed in the review section of the paper (Nadal et al., 2017), where architectures
were analyzed based on different Big Data characteristics, including Variety, which is
one of the aspects that determines the need for evolution support. Three architectures
were added to the list of the studied architectures, which support certain evolution as-
pects, according to the authors of the paper (Nadal et al., 2017).

RQ4 What is the role of metadata in Big Data architectures? RQ4 was studied for
all architectures selected for research, additional papers were not included in the list of
the examined architectures.

3 Architectures for Big Data Analysis

To answer our first research question RQ1, we classified all examined studies into four
architecture types: BDW-Big Data warehouse/OLAP type, DL-data lake, VI-virtual in-
tegration architecture, P-Polystore, as well as O-other variations of standart types. Ta-
ble 1 outlines the references explored in our study and clusters solutions into the men-
tined architecture types.

In relation to the second review question RQ2, the role of a data warehouse is also
indicated if such component is employed in the architecture. Analysing the data in the
table 1, an observation can be made that a data warehouse is either a central component
of the proposed architecture or it is feeded with data from a data lake. Solutions that
follow principles of the virtual integration, polystore or λ-architecture do not include a
data warehouse component.

Table 1: Architectures for Big Data analysis

Paper Architecture DW Role in the
Architecture

Batch/Stream
Processing

(Chen, 2010) BDW DW is the central
component of the
architecture.

Batch

(Chen et al., 2017) BDW (pre-processed
data is stored in the
data storage module)

The system transforms
raw data into
pre-calculated data
cubes and
encompasses OLAP
analysis module.

Batch& stream



Handling Evolution in Big Data Architectures 25

Paper Architecture DW Role in the
Architecture

Batch/Stream
Processing

(Santos et al., 2017) BDW DW is the central
component of the
architecture. The data
in a DW is loaded
from the Big Data
staging area.

Batch

(Song et al., 2015) BDW DW is the main system
component, which
stores data in HDFS.

Processing mode
depends on
user-defined ETL
process

(Sumbaly et al., 2013;
Wu et al., 2012)

BDW Data from the source is
transformed into
OLAP cubes.

Batch (every 2 hours)

(Tardio et al., 2015) BDW DW is the central
component of the
architecture

Batch & stream

(Dobson et al., 2018) DL Data from a data lake
is periodically loaded
into a DW by ETL
processes

Batch & stream

(Zhuang et al., 2016) DL (unstructured data
management system)

N/A Batch and real-time
task processing

(Hai et al., 2016) DL N/A It can be inferred that
both batch and stream
modes are possible

(ElSheikh et al., 2013) VI N/A Batch & stream

(Yuan et al., 2010) VI N/A Batch & stream

(Gadepally et al.,
2017)

P N/A Batch

(Wang et al., 2017) P N/A Batch

(Alsubaiee et al., 2014) O (local storage) & VI
(external data sources)

N/A Batch & stream

(Nadal et al., 2017,
2019)

O (λ-architecture
extended with
semantic layer)

N/A Batch & stream

(Vanhove et al., 2015) O (based on
λ-architecture
principles, using an
enterprise service bus)

N/A Batch & stream

Since one of the characteristics of Big Data is Velocity meaning that data may in-
come into the system with different speed, both processing modes, batch and stream,



26 Solodovnikova and Niedrite

need to be supported in the candidate architecture. Therefore, the processing modes
provided in each examined study are added to the table 1. We give the details of the
solutions leveraged by studies mentioned in the table 1 in the following subsections to
elaborate on the research question RQ1.

3.1 Big Data Warehouse/OLAP Type

3.1.1 Cheetah. The paper (Chen, 2010) presents an original solution of a data ware-
house for the analysis of Big Data named Cheetah developed using the MapReduce
paradigm. The proposed solution leverages a snowflake schema. The solution includes
virtual views that are built on top of such schema by selection of fact table measures
and attributes of all related dimensions. User queries are executed on virtual views. The
authors also developed a query language that is similar to SQL, allowing to query mul-
tiple virtual views and perform aggregation. If a user runs a query on multiple views,
all columns included in the query are selected, but if any of the columns is not available
in the view, its value is replaced by NULL.

The authors use a data warehouse to analyze advertising data and provide such
analysis to customers. It is mentioned in the paper that because of the nature of the data
warehouse business environment, schema changes in it occur frequently. The proposed
solution supports the evolution of a data warehouse schema in two ways. First, the
authors apply slowly changing dimension approach by Ralph Kimbal (Kimball and
Ross, 2013). Secondly, changes to the fact tables are implemented through versions,
i.e., for each row of a fact table, a version identifier is supplied and information about
columns belonging to a particular version is stored in the metadata. The recognition of
changes in a data warehouse schema and their treatment is not described in the paper.

The paper also presents an architecture of the system. Data warehouse data is stored
in a cluster. Users can use a web interface, command line interface, or Java code with
JDBC to execute queries. One of the cluster nodes runs a query engine that uses meta-
data and converts user queries into MapReduce jobs that are executed on multiple data
nodes and calculates the desired result. Each node has a data access primitive (DAP)
interface, which is actually a scanner on virtual views.

Physically data warehouse data is stored in a variety of formats: text (CSV), serial-
ized Java object, queue-based binary array and column-based binary array. The authors
claim that the last format is preferred since it offers the best query performance, which
is proved with experimental evaluation.

3.1.2 An Optimized Distributed OLAP System for Big Data. The authors of the
paper (Chen et al., 2017) describe an OLAP system for Big Data analysis as well as the
optimization of this system. The system consists of 4 modules:

– In the data acquisition module, source data is obtained: relational database table
data is retrieved using batches, and unstructured data (log file data) is obtained as
streams.

– All data is stored in the data storage module: the data to be analyzed is stored in
a distributed file system, user rights data and metadata are stored in the relational



Handling Evolution in Big Data Architectures 27

database, the key-value database stores previously calculated OLAP cubes and their
metadata.

– In the OLAP analysis module, user-defined cubes are calculated and an interface
for SQL-like queries is provided.

– The main goal of the data visualization module is to provide user connection, user
rights management, graphical representation, saving and export of query results, as
well as definition of OLAP cubes for the OLAP analysis module.

Various existing tools are used to implement the proposed system architecture.
Scoop is used to retrieve data from structured data sources and to load into HDFS,
Flume is used to retrieve log file data. Hive is used for the storage of structured source
data and Kafka is used for log file data. OLAP analysis is provided by Kylin for pre-
calculated cube data and Impala for ad-hoc queries. The authors note that Impala can
process original data loaded from data sources, but it works slowly, Kylin works faster
but pre-calculates potentially useful cubes. Saiku is used for data visualization.

The authors also present their optimization solutions for the architecture where one
relates to automatic metadata generation for the Saiku tool based on Kylin metadata,
and the other is related to configuring the cache for the Saiku tool.

Finally, the authors demonstrate an experimental evaluation of their proposed sys-
tem that shows better performance of Kylin compared to Impala and better performance
when queries are cached comparing to the case when they are not cached.

Even though the authors do not mention evolution, the proposed solution can be
complemented by evolution support. Its’ week point is the lack of integration of data
from different data sources.

3.1.3 Modelling and Implementing Big Data Warehouses for Decision Support.
The paper (Santos et al., 2017) is dedicated to the problem of migrating an existing
data warehouse based on a traditional star schema to a Big Data warehouse built on
Hive. The authors propose laws that allow one to convert the traditional data warehouse
model to the Hive data model. The authors suggest that these laws allow to obtain an
optimized model and that queries on it run faster.

In the paper, the authors emphasize that originally a traditional data warehouse al-
ready exists. The previous data warehouse is also included in a data warehouse architec-
ture that the authors propose for Big Data applications, although authors also mention
the architecture modification in case a relational data warehouse did not exist previously
in an organization. If a data warehouse already exists, then ETL processes firstly load
source data into the existing data warehouse and then, as the second step, they migrate
the data from it to the HDFS staging area. The authors use the toolkit Talend Open Stu-
dio for Big Data to implement ETL processes. If a data warehouse did not exist before,
the first step is omitted. In the third step, the data is modified according to the laws
proposed by the authors and loaded into Hive tables. Next, in the fourth step, data from
Hive is prepared for analysis with Impala: queries are executed and their results are
presented by dashboards and other visualization methods. Users of the system leverage
a front-end tool Tableau to analyze data.

The purpose of our paper is to examine architectures that are applicable in any case,
whether an organization already has a data warehouse or not, so it is worth analyzing



28 Solodovnikova and Niedrite

only a part of the architecture proposed in the paper. In addition to the fact that the
architecture used in this paper does not support evolution, it does not analyze and use
unstructured data and is only used for batch data loading.

3.1.4 HaoLap. The paper (Song et al., 2015) presents HaoLap - an OLAP system
for Big Data implemented in Hadoop. The authors propose a data model utilized in the
system and algorithms for execution of aggregate queries, roll-up and drill-down opera-
tions and for data distribution among multiple nodes of the system. To store Big Data in
the system, the authors utilize an OLAP cube data model with dimension tables struc-
tured into hierarchy levels and fact tables which include measures that are distributed
over multiple nodes in the overall architecture.

Each query in the system is perceived as an aggregation query with certain con-
ditions on the dimension table values. For each query, the system first finds fact table
chunks that contain measures that match the query conditions. Then, measure values
corresponding to the conditions set on dimensions are selected from each chunk. Usu-
ally, if aggregation is required, then data is grouped for the particular aggregate function
based on certain dimension levels. Using dimension surrogate keys and dimension cod-
ing and traversing algorithms offered by the authors, firstly measurement values are se-
lected during the Map phase, then the aggregate function is calculated within the group
during the Reduce phase and the query result is saved as a chunk in the MapFile. Once
all the files are created, the pieces stored in them are combined in the result cube. The
authors also describe a data loading process, which transforms original data obtained
from data sources into the data model proposed in the paper. Map and Reduce tasks are
executed for this purpose.

The solution leverages share-nothing architecture, which consists of the following
components:

– Hadoop cluster that stores OLAP cube data that is loaded using the ETL tool;
– A metadata server that contains metadata about dimensions and cubes;
– A job node that manages queries according to the algorithm developed by the au-

thors by first performing a validation of the OLAP service facade query, then con-
figuring the MapReduce task according to the query and finally reporting the query
results to the OLAP service facade;

– OLAP service facade, which is a mediator between the OLAP client and the task
node and which receives the query, checks for correctness, creates an intermediate
form query using the information from the metadata server, provides an interme-
diate request to the task node, awaits for the result, and supplies it to the OLAP
client;

– OLAP client allow users to query data and display cube data.

The authors also perform experimental analysis and compare the performance of
the proposed system with other similar solutions: Hive, HadoopDB, Olap4Cloud and
HBaseLattice. The authors note that the proposed solution outperforms other available
solutions.



Handling Evolution in Big Data Architectures 29

3.1.5 Avatara. The paper (Sumbaly et al., 2013) discusses an architecture that applies
Big Data technologies and is used for large-scale data processing and OLAP analysis in
LinkedIn. The architecture supports evolution of source data by maintaining a schema
registry and ensuring that the schema matches the desired structure or is adaptable to
it. OLAP functionality is provided by the distributed system Avatara presented in the
paper (Wu et al., 2012).

Avatara is used in LinkedIn social network to provide OLAP analysis for each indi-
vidual user profile and job offer. The specificity of the system is that it contains a large
number of small OLAP cubes, because separate cubes are created for each user or job
offer and data in each such cube is not large compared to the total size of data.

Avatara consists of two subsystems: offline cube calculation engine and online
query processing engine. OLAP cubes are re-calculated every 2 hours, but queries are
executed on cubes with a response time of tens of milliseconds. This means that data
returned by a query is maximum 2 hours old, but to get a query result one does not have
to wait long. Offline engine performs user-defined joins and aggregation from source
data, resulting in a generation of multiple small cubes. The offline engine uses Hadoop
and generates cube data in a key-value format.

Users leverage an online query engine to define SQL-like queries. Queries are ex-
ecuted by applying such operations as filters, sorting and aggregation on a key-value
store. LinkedIn company uses Voldemort to store data. Both engines support cube ma-
terialization and developers choose which cubes to materialize.

Cube construction consists of 3 phases. Initially, data is pre-processed using sev-
eral defined functions, such as data aggregation. In the second phase, dimensions, fact
tables and measures are defined. The last step is the cubification, where several small
OLAP cubes are generated that are sharded on a chosen key, measure aggregation is
also applied. Cube data is stored in MOLAP format. Next, the cubes are loaded into
a distributed key-value store. Cube data is supplemented incrementally, therefore, it is
possible to update cubes several times a day.

When a query is executed, if the data store supports local storage nodes computa-
tion, the query engine supplies query predicates to the store to reduce the amount of
data transmitted over the network. A cube with previously calculated and aggregated
data is returned from the store.

The authors also mention the evolution problem when a new dimension is added to
data. This change is not executed automatically because the structure of cubes must be
defined a priori, so in case of a new dimension the developer has to change the cube
configuration manually and re-start a cube generation process with a new configuration.

3.1.6 An Iterative Methodology for Big Data Management, Analysis and Visual-
ization. The study presented in the paper (Tardio et al., 2015) proposes a methodology
for a construction of a system for Big Data analysis. The system is based on a multi-
dimensional model (MD) and Big Data warehouse. One of the methodology steps is a
design of a MD. Information requirements must be defined before the model is con-
structed. Initially, several data sources are analyzed and a MD is constructed separately
for each source. After the creation of several models, they are grouped based on fact



30 Solodovnikova and Niedrite

similarity, elements of the models united into each group are compared and the models
are integrated. The integration process is carried out several times to get a unified MD.

The authors also discuss a model enrichment process, which may take place when
a new data source is added to the system or additional data are discovered by apply-
ing data mining methods. To handle changes in Big Data, the authors propose iterative
execution of the model design step until such a model is obtained that can satisfy all
information requirements. In the context of the Big Data warehouse evolution, the au-
thors’ proposed method for model design, integration and enrichment can be used not
just for the initial data warehouse construction, but also for evolution when a MD needs
to be supplemented due to new information requirements or new data source addition.
Problems arise when any of the previously available data sources becomes unavailable.

The authors use Apache Pig and Hive to structure and query source data. After
the multidimensional model has been constructed, the authors propose to use different
tools to implement a data warehouse, depending on the desired query latency. For high
latency, the authors suggest using MapReduce/HDFS-based tools, such as Apache Hive,
but for low latency, they propose the use of a database that supports Big Data such as
a massive parallel processing database (HP Vertica) or an in-memory approach (Power
Pivot and QuickView).

3.2 Data Lake

3.2.1 A Reference Architecture and Model for Sensor Data Warehousing. In the
paper (Dobson et al., 2018), the authors propose an architecture and data warehouse
model for analyzing sensor data. The architecture is currently in the status of a proposal
and has not been implemented in real use cases. The authors point out the implementa-
tion and validation of the architecture and model as further work directions. However,
since the article is new (published in 2018) and the idea seems perspective, this study
was included in our review.

In the proposed architecture, sensor data is retrieved from data sources and loaded
into the data lake repository. Both batch and stream modes are supported in this process.
Data lake data is periodically copied into the data warehouse using ETL processes.
The authors state that all types of data: structured, semi-structured and unstructured,
are required for sensor data analysis. From the technology point of view, the authors
propose the use of Hadoop and other frameworks supported by it for various tasks,
such as stream processing frameworks Apache Storm, Apache Spark, Apache Flink (the
latter two could also be used in batch processing mode). HDFS file system is suggested
for storage of unstructured data and Apache Hive, SparkSQL or Impala are proposed
for structured data. Apache Kylin could be used to support OLAP operations.

The evolution perspective is also mentioned in the paper. The authors believe that
data lake could be easily transformed/supplemented to reflect changes in data sources.
In such a case ETL processes must be appropriately adapted to take into account changes
that have occurred, and evolution must be handled in the data warehouse schema. Even
though the authors outline the possible evolution management process, practical meth-
ods for it are not proposed in the architecture.



Handling Evolution in Big Data Architectures 31

3.2.2 D-Ocean. In the paper (Zhuang et al., 2016) a data management system for un-
structured data D-Ocean is described. The architecture of D-Ocean is open and scalable,
it provides the possibility to store data in different data stores, has both batch and incre-
mental modes of unstructured data processing, and ensures a search engine for complex
query processing. The D-Ocean architecture consists of three layers tools, core and
infrastructure.

– There are 7 main modules in the core layer: interfaces, environment controller,
repository, analytics component, indexes, and also search and data processing mod-
ules. The repository ensures CRUD operations with data. They are afterwards ex-
ecuted by the data processing module that uses tools from other modules, e.g. in-
dexes.

– The infrastructure layer provides the data storage and data processing infrastruc-
ture. For the data storage different types of stores can be used including NoSQL
databases, for example, HBase, and file systems, for example, HDFS and FastDFS.
Other technologies used for the implementation are: Hadoop MapReduce for the
data processing, Solr for indexing, and ZooKeeper for coordination of processes.

The complexity of unstructured data is determined by the rich semantics, by other
features that can be obtained from raw data, and by links between unstructured data
objects, for example nesting and inheritance. To store data according these features
D-Ocean provides a model of unstructured data, where the main objects are UObject,
Feature, UType, FeatureType and others. D-Ocean supports also an SQL-like query
language UQL, that ensures among other options the CRUD type operations, full text
search, and aggregation.

The evolution or enhancement of the D-Ocean system is possible in different ways.
The data model can be extended using FeatureType and UType objects by defining
relevant new types and assigning new processing methods for them. The infrastructure
for data storage can be enhanced by defining new interfaces. Also data processing can
evolve by adding new plugins into the processor module.

Important role for the consistent operation of the system plays the implementation
of the repository. During the execution of user queries the type information and data
queries are processed. The meta manager stores the type information into the metastore
database, so providing metadata for the functions of the whole system.

Along with the unified data storage system, D-Ocean also provides two modes of
data processing: batch and incremental. The processor module sends in the batch mode
the data processing tasks directly to Hadoop, but in the incremental mode, a message
queue is built to support the real time processing.

3.2.3 Constance. The authors of the paper (Hai et al., 2016) present a data lake sys-
tem Constance that identifies and manages structural and semantic metadata, integrates
and simplifies multiple schemas based on metadata, and offers an interface for query
definition and execution.

The system is composed of 3 layers. In the ingestion layer, data from different data
sources is loaded into the repository in its original format.



32 Solodovnikova and Niedrite

In the maintenance layer, data source metadata is obtained, source schema integra-
tion and global schema simplification are conducted. Metadata acquisition from rela-
tional sources and partly structured data sources with schema (e.g. XML data with XSD
schema) is possible directly from the data source. A structural metadata discovery com-
ponent is used to obtain metadata for other semi-structured data sources. It identifies
indirect metadata using 2 approaches. First, the structural metadata discovery compo-
nent analyzes data files from the sources and searches for metadata information, such
as column names in an Excel table, directory structure, etc. Secondly, relationships
between data entities are discovered in source data that are later supplemented by rela-
tionships that are often encountered in user queries, i.e. over time, metadata is enriched
and updated. The second component included in the maintenance layer is a semantic
metadata matching, which performs ontology modeling from metadata, attribute anno-
tation, record linkage, and semantic enrichment. This component constructs a graph
representing elements of the source schemas and their relationships. In this way, multi-
ple sources are integrated. After that, schemas are grouped and, as a result, a simplified
view of the integrated schema is obtained that filters the most important elements of the
schema and their relationships.

The querying layer ensures rewriting and processing of user queries. Queries can be
defined by a formal language (JSNOiq) or by leveraging a query formulation component
that allows to build a query using key words.

The authors mention that Constance is a flexible system that can connect new data
sources to the ingestion layer to supplement the system. Besides, it can be inferred that
changes in schemas of data sources would be automatically discovered by the system
components in the maintenance layer, which means that data source evolution is natu-
rally supported.

3.3 Virtual Integration

3.3.1 SODIM. The paper (ElSheikh et al., 2013) provides a system SODIM for data
integration based on a virtual database approach. The architecture consists of the fol-
lowing components:

– Data from data sources is obtained through web services. Information about each
web service is available in WSDL format. By executing a user query, the architec-
ture determines services required for the response and dynamically employs them
using service descriptions (WSDL) and DAIOS framework.

– A user exploits the integrated service to define a query. The integrated service con-
verts the user query into a job that executes a partial query on each required data
source and combines data from different data sources.

– Hadoop is used for the job execution. It divides the job between workers and com-
bines individual results.

Experiments with different hardware configurations are also performed and de-
scribed in the paper. Unfortunately, no detailed implementation of the architecture is
discussed, for example, it is not mentioned how jobs are generated and how user queries
are transformed into partial queries.



Handling Evolution in Big Data Architectures 33

3.3.2 VDB-MR. The authors of the paper (Yuan et al., 2010) propose the use of
MapReduce technology to query the virtual database (VDB-MR). VDB is a virtual
integration technology that allows users to define a global schema that combines several
different source schemas. Source data is not transferred physically to the global system.
Traditional VDB architecture consists of 4 components:

– Mapper defines a global integrated schema and mapping of its elements to source
schemas,

– Publisher manages user queries, distributes them to execute on different data sources,
– Executer performs queries on data sources, combines query results, solves conflicts,
– Wrapper operates on a separate source, converts queries to a format that is under-

standable by a specific source, and converts query results obtained from that source.

The authors of the paper claim that the traditional VDB architecture cannot execute
queries on large amounts of data and combine query results within a reasonable time,
so the authors suggest using MapReduce in the query execution step.

The architecture proposed in the paper supports 4 operations. Map operation defines
the mapping of source schema elements to the global schema. Select operation selects
data (similar to a simple SQL Select query). Join operation connects multiple tables.
Update operatoion performs data modifications (delete, update, insert).

The process of performing each operation using MapReduce approach is described
in the paper. For example, the Select operation is executed as follows. The Manage
process is executed. It divides a query into subqueries where each subquery is executed
on a separate data source. After that, the Map process is executed when a worker runs a
query on a particular data source. As a result, data in a format of key:value is generated
where the key consists of the primary key of a table from the global schema and the
value is a set of values of the other attributes obtained from the particular data source.
Next, the Reduce process is executed when the reduce worker converts data obtained
from map workers. Data records with the same key obtained from different data sources
are merged and their attributes are combined. If the same attributes with different values
are obtained from different data sources, the first value of each such attribute is selected.
Finally, the Collect process is executed. It converts the data obtained from the Reduce
process into a user-friendly format.

The authors of the paper have also conducted an experimental evaluation of their
proposed VDB implementation, which showed the better performance compared to an-
other VDB system (without the use of MapReduce) and parallel RDBMS.

The proposed system does not support the schema evolution directly, but it can
be implemented manually, for example, by mapping redefinition. Similarly, new data
sources can be added. Data maintenance after evolution is not necessary as up-to-date
data is obtained directly from sources.

3.4 Polystore

3.4.1 BigDAWG. According to the definition given in (Gadepally et al., 2017) ”A
polystore system is any database management system (DBMS) that is built on top
of multiple, heterogeneous, integrated storage engines.” BigDAWG (Gadepally et al.,



34 Solodovnikova and Niedrite

2017) is one of the possible implementations of a polystore. The base layer is formed
of a number of data storage engines. These engines are organized in multiple islands,
that each have a common data model and a set of operations

The islands component is connected with one or more storage engines by means
of shim components. The main goal of a shim is to transform the operations of an
island into the query language of a particular storage engine. BigDAWG also includes
cast components, which if necessary can transfer data from one data storage engine to
another.

The main part of BigDAWG is a middleware, which is an interface to the storage
engines and uses the islands. The middleware consists of the following components:

– Optimizer transforms the original query into many possible query plans of each
subquery for potential engines;

– Monitor uses the performance data of previous query execution to find out the best
combination of query plan and execution engine;

– Executor chose the best way how to join the data collections and then executes the
query;

– Migrator moves the data from one engine to another, if the execution plan predicts
that it will be more efficient.

BigDAWG stores the necessary metadata in a metadata catalogue. For example,
the migrator and executor use data about systems data storage engines: their location,
data objects and others. For the implementation of the metadata catalogue, the Post-
greSQL database is used and the following tables are stored: Engines (engine names,
login information), Databases (names, relation to particular engine, login information),
Objects (data objects, e.g. tables, field names, relation to a particular database), Shims
(possibility to integrate a shim with a particular island), Casts (possible moves between
engines).

The initial BigDAWG implementation supports three open source database engines:
PostgreSQL, Apache Accumulo (NoSQL), and SciDB (NewSQL), and accordingly re-
lational, array and text islands. The middleware uses Docker containers.

3.4.2 Myria. Myria (Wang et al., 2017) is a system for integrated data management
and analysis, that have a special execution engine MyriaX. At the same time execution
plans for other different execution engines can be generated, including Spark, SciDB
and PostgreSQL.

Each of the Big Data processing systems that are integrated into the Myria polystore
supports more efficiently a particular type of tasks, for example, SciDB supports array
processing, but MyriaX executes efficiently iterative queries. These systems often are
deployed in the cloud, so the Myria user gets the advantage of each particular system
without caring about usage of them separately.

The query execution engine MyriaX mainly is a traditional parallel database system
extended with different features, for example, usage of data from different sources:
HDFS, Amazon cloud and others. Myria is service oriented and developed as a cloud
service. The main application area is the relational data.



Handling Evolution in Big Data Architectures 35

Myria is designed for analysis of data that is stored in different back-end systems
covering also those with non-relational data models. Myria provides common services
for the whole polystore environment including query execution and optimization. For
the query execution in federated environment and for the optimization, Relational Al-
gebra Compiler RACO is developed. RACO is based on the relational algebra, but also
supports the compilation of relational expressions for the array, graph or key-value en-
gines. The Myria logical algebra expressions are translated into physical expressions
of one or more supported back-end systems. The execution plans are also generated,
which also include data movements among back-end systems.

The users can express their queries using MyriaL, a relational query language with
extensions. MyriaL is similar to the procedural language PL/SQL. Pyton also can be
used through API or user defined functions.

3.5 Variations of Standard Types

3.5.1 AsterixDB. The paper (Alsubaiee et al., 2014) discusses AsterixDB Big Data
management system (BDMS) that allows to store semi-structured data in partitions and
execute queries on them. Data are stored in a Dataverse, which is similar to a database
concept in traditional relational databases. Schema of the data to be stored is defined
by Datatypes that may be closed or open, meaning that open datatypes allow additional
data properties that are not included in the schema specification but require all data
properties defined in the schema. It is possible to load data into the system or exe-
cute queries on external data without storing them locally. This way virtual integration
may be implemented using the proposed BDMS. Data feeds are designed to load data.
They can load data both in batch or stream modes. AsterixDB supports various types of
queries, user defined functions, primary and secondary indexes for fast querying, data
insertion and deletion operations.

Data storage mechanism implemented in AsterixDB allows schema evolution by
allowing storage of new data that does not conform to the scheme, but in case of a
new data source, a new data type must be defined at least minimally. If any data field
described as mandatory in the data type is removed from the source data, the system will
not allow such data to be loaded from that data source. Data maintenance is supported
by means of data feeds, data insertion and deletion operations.

3.5.2 Bolster. The paper (Nadal et al., 2017) presents a software reference architec-
ture for Big Data processing and analysis. The proposed architecture solves various
kinds of problems related to Big Data characteristics, including Variability or evolution
problems. The architecture is based on λ-architecture and is extended with semantic
layer components. The proposed architecture is composed of 4 layers:

– In the batch layer massive volumes of data are periodically obtained from batch
data sources and loaded into a data lake in their original format. Then, data from
the data lake is processed with iterative algorithms to meet requirements of the
particular system and moved to the serving layer.



36 Solodovnikova and Niedrite

– In the speed layer stream data is put through a dispatcher component that validates
data quality and routes data either to the data lake for subsequent batch processing
or to the stream processing component for real-time analysis.

– Processed data from both the batch layer and speed layer is available for analysis
by end users in the serving layer as batch views and real-time views via the query
engine component. Furthermore, it is also possible to leverage such views as data
sources for additional transformations.

– The operation and decisions made by various components of the architecture, such
as batch processing component, dispatcher, stream processing component and query
engine, are regulated by the metadata stored in the form of RDF ontologies in the
metadata repository and maintained by the metadata management system in the
semantic layer of the architecture.

A solution to handling data source evolution problems in the architecture is pre-
sented in the paper (Nadal et al., 2019). The proposed approach could be used when
source data is obtained using wrappers, such as Rest API in JSON format, and loaded
into a Big Data ecosystem. The authors use a local-as-view (LAV) approach to de-
fine a mapping between elements of a data source and elements of a target or global
schema. LAV means that the source elements are defined using the elements of the
global schema. This approach makes it easy to process changes in data sources without
changing analytic queries on a global schema.

The authors propose the use of Big Data integration ontology to define the inte-
grated schema, source schemas, and their versions, and LAV mappings between them
as a graph. The ontology is also used to specify queries. When a change at a data source
occurs, the system steward supplements the ontology with a new release. A new wrap-
per with unchanged and new attributes is assigned to the changed data source, and a
mapping between new attributes and a target schema is defined. The proposed approach
is usable only if the source data has a schema and cannot be directly applied for un-
structured data. The paper does not discuss the determination of change occurance at
data sources and the evolution of the global schema has not been considered.

In the paper (Nadal et al., 2017) the authors also name available tools and technolo-
gies that could be used to instantiate components of Bolster. In the batch layer ad-hoc
scripts or existing drivers such as Apache Sqoop may be applied for batch data inges-
tion; HDFS or Amazon S3 may be leveraged to implement batch data storage in a data
lake, and Apache MapReduce, Amazon Elastic MapReduce, Apache Spark or Apache
Flink may be used for batch processing.

To implement stream ingestion in the speed layer, the authors recommend the use of
tools for message queue processing, such as Apache ActiveMQ and RabbitMQ, as well
as tools specially aimed at stream data acquisition, such as Apache Kafka and AWS Ki-
nesis Firehose. For stream data routing, such tools as Apache Flume or Amazon Kinesis
Streams are applicable. Apache Spark Streaming, Apache Flink Streaming and Ama-
zon Kinesis Analytics may be used to process stream data and generate corresponding
real-time views.

Many distributed systems are suitable to store batch view data. Several potential ex-
amples mentioned in the paper include Oracle, Postgres-XL, MySQL Cluster, Apache
HBase, Apache Cassandra, Amazon DynamoDB, Voldemort, Amazon Redshift, Apache



Handling Evolution in Big Data Architectures 37

Kudu, Neo4j, OrientDB, MongoDB, RethinkDB, SAP Hana, NuoDB, VoltDB. Exist-
ing tools that may be used to instantiate real-time views are also named. These are in-
memory storage systems, such as Redis, Elastic or Amazon ElastiCache, and a database
that runs queries on streams PipelineDB. A query engine may be represented as Apache
Kylin, Kibana or Tableau.

Finally, in the semantic layer Apache Stanbol, Apache Atlas, Cloudera Navigator or
Palantir may be used as metadata management systems, and Virtuoso or graph databases
may be chosen for metadata storage.

3.5.3 Tengu. Tengu (Vanhove et al., 2015) is an experimentation platform for data
analysis. The platform supports an automatic installation of its components according
to the needs of a particular project. This experimentation platform is compatible with
GENI (US federation of testbeds) and Fed4FIRE (EU federation of testbeds). The auto-
matic installation includes different Big Data analysis frameworks, relational databases
and cloud services.

Tengu architecture consists of three major parts: a computational unit, data store and
a set of resources for a particular application. The communication among these parts is
supported by the Enterprise Service Bus that acts as a middleware. The computational
unit is based on the principles of the λ-architecture that supports batch and stream data
analysis. The batch layer provides a view over the whole data, but the new data are
arriving in the speed layer. The new data are analysed and afterwards added also to the
batch layer. These data are then used in the next analysis step and also deleted from
the speed layer to avoid data redundancy. For storage of data, Tengu offers a variety of
options to provide an optimal solution for a specific application; multiple simultaneous
data stores are also possible. TENGU supports also the data store transformations which
means that projects data store can be replaced with another data store if necessary.

Tengu platform provides evolution support, offering the option of automatic trans-
formation from one storage type to another. The necessity for the evolution is caused by
the usage of an experimental application over a time. The transformation is performed
by the already mentioned Lambda architecture. The transformation starts with the batch
layer where the schema and data of the original data stores snapshot are transformed
according to the requirements of the new data store. At the same time the speed layer
transforms the new queries. The next step is the creation of a new data store using the
transformed snapshot and transformed queries from the speed layer. Then the platform
switches the application from the old data store to the new one. The Enterprise service
bus provides the communication between the application and the data store and also
provides the query transformation. The user can continue to use a convenient query
language in a new data store.

Tengu supports Hadoop and Storm for batch and speed layers, MySQL, Cassandra
and ElasticSearch for the data storage. Tengu supports usage of OpenStack, Tomcat,
Zookeeper and Kafka, but after minor changes the architecture allows to integrate also
other new technologies.



38 Solodovnikova and Niedrite

4 Analysis of Architecture Characteristics

4.1 Evolution

Because of the nature of Big Data, evolution problems are more topical than in tra-
ditional structured data storage and processing systems. The table 2 summarizes ap-
proaches to support evolution applied in the studied architectures to answer our third
research question RQ3.

In our research, we classified evolution problems that must be solved into three
categories. Data maintenance must be provided by the architecture, since Big Data are
dynamic and up-to-date data from data sources are necessary for the analysis. Data
required for the analysis are often semi-structured or even unstructured, it is important
to dicover changes in such data and to handle them properly. New data sources may
become available and necessary to support new or more valuable analysis capabilities
provided by the Big Data analysis system. If Big Data available for the analysis are
structured into a schema (integrated target or global schema), evolution of such schema
(denoted as schema evolution in Table 2) may occur because of changes in information
requirements of the system, for example, when additional data may become necessary
for decision-making, or after changes in data sources.

Evolution is handled in different ways in the studied architectures. Data mainte-
nance is supported by ETL processes in Big Data warehousing architectures. Data lakes
(Dobson et al., 2018; Hai et al., 2016; Zhuang et al., 2016) accumulate source data in
its’ original format. Virtual integration architectures (ElSheikh et al., 2013; Yuan et al.,
2010) do not store copies of source data, therefore, maintenance problem is solved nat-
urally. Polystores (Wang et al., 2017), λ-architectures (Nadal et al., 2017) and other
architecture types (Alsubaiee et al., 2014) apply specific operations, such as union, in-
sert and delete or do not consider a data maintenance problem at all.

The support of inclusion of new data sources is very limited in the studied archi-
tectures. Mostly it must be handled manually or semi-automatically. The only study
capable of automatic data source discovery is a data lake (Hai et al., 2016) where new
data source metadata are detected by the architecture components.

Schema evolution is not considered in the majority of Big Data warehouse architec-
tures or is handled by slowly changing dimensions and versioning approaches that are
well known in the field of traditional relational data warehouses (Chen, 2010). Archi-
tectures that include data lakes (Hai et al., 2016; Zhuang et al., 2016) use metadata to
process changes in the integrated target schemata. In case of other architecture types,
schema evolution is not considered or may be implemented only manually.

Table 2: Evolution Support

Paper Data Maintenance New Data Sources Schema Evolution

(Chen, 2010) User-defined ETL N/A Slowly changing
dimensions, fact table
schema versions



Handling Evolution in Big Data Architectures 39

Paper Data Maintenance New Data Sources Schema Evolution

(Chen et al., 2017) Implemented in data
acquisition module

N/A N/A

(Santos et al., 2017) User-defined ETL N/A N/A

(Song et al., 2015) User-defined ETL N/A N/A

(Sumbaly et al., 2013;
Wu et al., 2012)

Cube data is bulk
loaded

N/A New dimensions are
added manually and
require cube
recomputation

(Tardio et al., 2015) Storage is
supplemented with
new data

Iterative model
enrichment

Iterative model
enrichment

(Dobson et al., 2018) User-defined ETL N/A N/A

(Zhuang et al., 2016) N/A N/A Data model is provided
for unstructured data,
two extensible types
allow addition of new
features

(Hai et al., 2016) Data is loaded as-is in
the ingestion layer

New source metadata
are discovered
automatically

Metadata of updated
schema are obtained

(ElSheikh et al., 2013) Naturally supported Yes (new web services
may be added
dynamically)

Yes (web service
description has to be
updated dynamically)

(Yuan et al., 2010) Naturally supported N/A N/A

(Gadepally et al.,
2017)

N/A Additional islands or
database engines can
be supported

N/A

(Wang et al., 2017) New data for base
relations are added
with union

Additional database
engines can be
supported

N/A

(Alsubaiee et al., 2014) Inserts and deletes Schema needs to be
defined

Partially

(Nadal et al., 2017,
2019)

Provided by batch and
speed layers

A new release is added
to the ontology

A new release is added
to the ontology

(Vanhove et al., 2015) N/A New data sources are
included automatically
by Enterprise service
bus using live
transformation
between two data
stores

N/A



40 Solodovnikova and Niedrite

4.2 Metadata

To answer our forth research question RQ4, we analyzed types and discovery meth-
ods of metadata applied in each architecture included in this study. The summary of
metadata utilization is given in the table 3. One of the characteristic of Big Data is va-
riety, therefore, we also classified the studied architectures with respect to supported
data formats: S-Structured, SS-Semi-structured, US-Unstructured. We also considered
metadata modelling approach if applicable in the analyzed architectures, such as SOR-
schema-on-read or SOW- schema-on-write, and data provenance issue.

Table 3: Metadata

Paper Variety Types of
Metadata

Metadata
Discovery
Method

Modelling
Approach

Data
Provenance

(Chen, 2010) S, SS Structural
metadata (DW
schema, fact
table schema
versions)

N/A N/A, DW
schema is
predefined

None

(Chen et al.,
2017)

S, SS Structural
metadata (table
structure, cube
metadata)

Metadata for
data
visualization
tool is obtained
automatically
from OLAP
engine metadata

N/A, DW
schema is
predefined

None

(Santos et al.,
2017)

S N/A N/A N/A, DW
schema is
predefined

None

(Song et al.,
2015)

S Structural
metadata (MD
schema)

N/A N/A, DW
schema is
predefined

None

(Sumbaly et al.,
2013; Wu et al.,
2012)

S N/A N/A N/A, cube
schema is
predefined

None

(Tardio et al.,
2015)

S, SS, US Structural
metadata (MD
model)

N/A N/A, DW
schema is
predefined

None

(Dobson et al.,
2018)

S, SS, US N/A N/A N/A, DW
schema is
predefined

None

(Zhuang et al.,
2016)

US Metastore
contains type
information

The meta
manager is used

SOR None



Handling Evolution in Big Data Architectures 41

Paper Variety Types of
Metadata

Metadata
Discovery
Method

Modelling
Approach

Data
Provenance

(Hai et al.,
2016)

S, SS, US Structural
metadata,
semantic
metadata

Structural
metadata
discovery,
Semantic
metadata
matching

SOR Yes

(ElSheikh et al.,
2013)

S, SS Structural
metadata
(WSDL)

WSDL has to
be provided by
a web service

SOR Yes

(Yuan et al.,
2010)

S, SS Structural
metadata
(global and data
source
schemata,
mappings)

N/A N/A, global
schema is
predefined

Mappings
between source
schemata and
global schema

(Gadepally et
al., 2017)

S, SS, US Metadata
Catalog
contains data
about engines,
databases,
objects, shims,
casts

N/A SOR, SOW None

(Wang et al.,
2017)

S, SS N/A N/A SOW None

(Alsubaiee et
al., 2014)

S, SS N/A N/A SOR, SOW None

(Nadal et al.,
2017, 2019)

S, SS, US Domain
vocabulary,
source and
global
schemata,
mappings

Data Source
Register
discovers
schemata of all
new data
sources

SOR Data
transformations
are registered in
logs

(Vanhove et al.,
2015)

S, SS, US Enterprise
service bus is
provided to
coordinate
usage of batch
and speed layer

Algorithms are
implemented to
analyze batch
data sets, a
batch view is
created

Batch view and
Speed view are
provided

None

Our results show that structural metadata, such as data source or global schema
metadata or mappings, are usually utilized in the majority of examined approaches and
more advanced studies (Hai et al., 2016; Nadal et al., 2017) provide also semantic meta-
data. Metadata discovery is implemented in the studies that are based on the data lake



42 Solodovnikova and Niedrite

architecture (Hai et al., 2016; Zhuang et al., 2016) or employ data lake as one of the
components (Nadal et al., 2017).

As to the metadata modelling approaches, a conclusion can be made that Big Data
warehouse architectures require manual metadata definition, data lake architectures fol-
low schema-on-read metadata aquisition method, but polystores either support schema-
on-write approach or both mentioned approaches. Although data provenance is an im-
portant feature that can be used not just to ensure data quality, but also to handle evo-
lution at data sources, no mechanisms to provide it are proposed in the majority of the
reviewed studies. Just the studies based on the data lake (Hai et al., 2016; Nadal et al.,
2017) or virtual integration architecture (ElSheikh et al., 2013; Yuan et al., 2010) offer
such solutions.

5 Big Data Warehouse Evolution Architecture

To solve the Big Data evolution problem, we propose an architecture that allows to
store and process structured and unstructured data at different levels of detail, analyze
them using OLAP capabilities and semi-automatically manage changes in requirements
and data expansion. The idea of the Big Data warehouse architecture was inspired by
our previous work on traditional data warehouse evolution framework (Solodovnikova,
2007). We extended the data warehouse evolution framework to the context of Big Data.

Fig. 1: Big Data warehouse architecture

5.1 Architecture Components

The proposed architecture consists of several components (Figure 1). In the source
layer, wrappers obtain structured and unstructured data from data sources and load them



Handling Evolution in Big Data Architectures 43

into the system at different rates in their original format. We adopt the idea proposed
by (Kimball and Ross, 2013) to build a highway of data at different levels of latency.
Starting from the raw source data, each next level data are obtained from the previ-
ous level data and are updated less often. Besides, the latter level data from multiple
heterogeneous sources are integrated and aggregated and finally are transformed into a
structured data warehouse schema.

Since data in the proposed architecture are firstly copied in their original format and
transformed at the later stage, ELT (Extract, Load, Transform) processes are responsi-
ble for data preprocessing. To gain structured data from unstructured sources, advanced
methods such as data mining or sentiment analysis must be performed. After being
loaded into the data warehouse, the data at each level of the highway are supplemented
by the generated surrogate keys of dimensions to ensure data provenance and enable
handling of evolution. Since ELT processes augment data at the lower level by informa-
tion obtained during the processing and transformations performed at the higher level,
it is possible to join data from different levels of the data highway to perform a more
valuable analysis.

The adaptation component is responsible for handling changes in data sources. The
main idea is to generate several potential changes in a data warehouse or other levels of
the data highway for each change in a data source and to allow a developer to choose
the most appropriate change that must be implemented. To implement certain kinds of
changes, the developer needs to supply via the adaptation component additional data
that cannot be identified automatically.

We plan to support different kinds of analysis. OLAP cubes may be explored by
business analysts in the form of dashboards, charts or other reports and by performing
OLAP operations using business intelligence and visualization tools. Since the vol-
ume of data stored in the data warehouse may be too large to provide a reasonable
performance of data analysis queries, the cube engine component precomputes various
dimensional combinations and aggregated measures for them. Apart from OLAP opera-
tions, data analysts may apply advanced analysis techniques (for example, data mining)
by means of utilizing existing analytics tools or implementing ad-hoc procedures.

5.2 Metadata Management

One of the most essential components of the proposed architecture is the metastore that
incorporates six types of interconnected metadata necessary for the operation of other
components of the architecture.

– Data highway metadata describe semantics and schemata of Big Data stored in the
different levels of the system.

– Cube metadata describe schemata of precomputed cubes and are leveraged not only
during the cube computation process but also for execution of queries.

– Mapping metadata define the logics of ELT processes. They store the correspon-
dences between data obtained from the sources and data items of the data highway.

– Information about changes in data sources is accumulated in the source change
metadata. Such information may be obtained from wrappers or during the execution
of ELT processes. We defined a set of atomic changes that may happen to data



44 Solodovnikova and Niedrite

highway levels and for each change, we determined metadata that must be recorded
to describe the change in the metastore.

– Adaptation rules specify adaptation options that must be implemented for different
types of changes.

– Finally, potential change metadata accumulate proposed changes in the data ware-
house schema.

The metadata models that describe schemata of the data highway, source data and
changes of the proposed metadata are presented in detail in (Solodovnikova et al., 2019).

To maintain the information in the metastore, a developer utilizes the metadata man-
agement tool. In addition, the metadata management tool allows the developer to ini-
tiate changes in the data highway and ELT procedures to handle new or changed re-
quirements for data. The history of chosen changes that are implemented to propagate
evolution of data sources, as well as changes performed directly via the metadata man-
agement tool, are also maintained in the potential change metadata.

5.3 Implementation

As a proof of concept, we have applied our proposed approach to the publications big
data system. The system integrates data about publications authored by the faculty and
students of the University of Latvia from one structured and three semi-structured data
sources and provides the unified data for analysis in the data warehouse. The data high-
way of the system is composed of three levels. The first level contains original data
incoming from data sources. We use Scoop to extract and transfer data from the rela-
tional database into Hive tables. Data from other sources obtained in XML format are
first pulled from the API and saved in Linux file system and then data are transferred
into HDFS using a script with HDFS commands. At the second level, semi-structured
data are transformed into structured Hive tables. Data at this level are not yet fully in-
tegrated. Finally, the third level of the highway is a data warehouse implemented in
Hive.

We implemented the metastore as a relational database (Oracle) and gathered auto-
matically schema metadata from the structured data source since we had the full access
to it. To process data extracted from external sources in XML format, we created a pro-
cedure that analyses the structure of XML documents and other properties and generates
necessary metadata in the metastore. The procedure is also able to compare metadata
existing in the metastore with the structure of actual XML files and detect changes that
are registered in the source change metadata.

We developed a prototype of the metadata management tool that currently displays
the metadata gathered in the metastore, allows a developer to track all changes discov-
ered in data automatically and add information about changes manually. During the
operation of the publication big data system, multiple changes were discovered in data
sources and other data highway levels by comparing existing metadata and data sets
extracted from data sources. We verified the information gathered about changes in the
metadata management tool.



Handling Evolution in Big Data Architectures 45

6 Conclusions and Future Work

Based on the analysis of existing architectures for Big Data processing, a conclusion
can be made that none of the solutions fully support all evolution problems, i.e. evo-
lution of data sources and changes in information requirements. The review papers as
well as some papers on data warehouse for Big Data applications agree on the existence
of evolution problems in the context of Big Data and the lack of solutions to these prob-
lems. In this paper, we have proposed a data warehouse architecture that will be able
to overcome the disadvantages of other solutions. The architecture will provide OLAP
analysis (including ad-hoc queries) of both structured and unstructured Big Data that are
loaded from multiple data sources into the system at different speeds and automatically
or semi-automatically process changes to both data sources and user requirements.

The architecture has not been fully implemented, therefore, our future research di-
rections include a development of algorithms for automatic and semi-automatic change
treatment. For the implementation of the Big Data warehouse architecture, we intend
to utilize the existing tools and technologies as well as to implement the original solu-
tions. After the implementation of the change handling methods, we plan to evaluate
our approach experimentally by applying TPC-H benchmark.

Acknowledgments

This work has been partly supported by the European Regional Development Fund
(ERDF) project No. 1.1.1.2./VIAA/1/16/057.

References

Abaker I., Hashem T., Yaqoob I., Anuar N.B., Mokhtar S., Gani A., Khan S.U. (2014). The rise
of big data on cloud computing: Review and open research issues, Information Systems, 47,
C, 215, 98-115.

Ahmed W., Zimnyi E., Wrembel R. (2014). A Logical Model for Multiversion Data Warehouses,
Proceedings of 16th International Conference on Data Warehousing and Knowledge Discov-
ery, Munich, Germany, 2014, 23-34.

Alsubaiee S., Altowim Y., Altwaijry H., Behm A., Borkar, V., Bu Y., Carey M., Cetindil I., Chee-
langi M., Faraaz K., Gabrielova E., Grover R., Heilbron Z., Kim Y., Li C., Li G., Ok J.M.,
Onose N., Pirzadeh P., Tsotras V., Vernica R., Wen J., Westmann T. (2014). AsterixDB: A
scalable, open source BDMS, Proceedings of the VLDB Endowment, 7, 14, 1905-1916.

Bentayeb F., Favre C., Boussaid O. (2008). A User-driven Data Warehouse Evolution Approach
for Concurrent Personalized Analysis Needs, Integrated Computer-Aided Engineering, 15,
1, 21-36.

Ceravolo P., Azzini A., Angelini M., Catarci T., Cudr-Mauroux P., Damiani E., Mazak A., Van
Keulen M., Jarrar M., Santucci G., Sattler K., Scannapieco M., Wimmer M., Wrembel R.,
Zaraket F. (2018). Big Data Semantics, Journal Data Semantics, 7, 2, 65-85.

Chen S. (2010). Cheetah: A High Performance, Custom Data Warehouse on Top of MapReduce,
VLDB Endowment, 3, 2, 1459-1468.

Chen W., Wang H., Zhang X. (2017). An optimized distributed OLAP system for big data, Pro-
ceedings of the 2nd IEEE International Conference on Computational Intelligence and Ap-
plications, Beijing, China, 2017, 36-40.



46 Solodovnikova and Niedrite

Cuzzocrea A., Bellatreche L., Song I. (2013). Data Warehousing and OLAP over Big Data: Cur-
rent Challenges and Future Research Directions, Proceedings of 16th international workshop
on Data warehousing and OLAP, San Francisco, CA, USA, 2013, 67-70.

Dobson S., Golfarelli M., Graziani S., Rizzi S. (2018). A Reference Architecture and Model for
Sensor Data Warehousing, IEEE Sensors Journal, 18, 7659-7670.

Duggan J., Elmore A.J., Stonebraker M., Balazinska M., Howe B., Kepner J., Madden S., Maier
D., Mattson T., Zdonik S. (2015). The BigDAWG Polystore System, SIGMOD Rec., 44, 2,
11-16.

ElSheikh G., ElNainay M.Y., ElShehaby S., Abougabal M.S. (2013). SODIM: Service Oriented
Data Integration based on MapReduce, Alexandria Engineering Journal, 52, 313-318.

Hai R., Geisler S., Quix C. (2016). Constance: An Intelligent Data Lake System, Proceedings of
the 2016 International Conference on Management of Data, San Francisco, California, USA,
2016, 2097-2100.

Holubov I., Svoboda M., Lu J. (2019) Unified Management of Multi-model Data, Conceptual
Modeling. ER 2019. Lecture Notes in Computer Science, 11788.

Gadepally V., O’Brien K., Dziedzic A., Elmore A., Kepner J., Madden S., Mattson T., Rogers J.,
She Z., Stonebraker M. (2017). BigDAWG version 0.1, Proceedings of IEEE High Perfor-
mance Extreme Computing Conference (HPEC), Waltham, MA, USA, 2017, 1-7.

Golfarelli M., Lechtenbrger J., Rizzi S., Vossen G. (2006). Schema versioning in data warehouses:
Enabling cross-version querying via schema augmentation, Data & Knowledge Engineering,
59, 2, 435-459.

Kaisler S., Armour F., Espinosa J.A., Money W. (2013). Big Data: Issues and Challenges Moving
Forward. Proceedings of 46th Hawaii International Conference on System Sciences, Wailea,
Maui, HI, USA, 2013, 995-1004.

Kimball R., Ross M. (2013). The Data Warehouse Toolkit: The Definitive Guide to Dimensional
Modeling, 3rd edition, John Wiley & Sons, Inc.

Malinowski E., Zimnyi E. (2008). A Conceptual Model for Temporal Data Warehouses and Its
Transformation to the ER and the Object-Relational Models, Data & Knowledge Engineer-
ing, 64, 1, 101-133.

Marz N., Warren J. (2013). Big Data: Principles and best practices of scalable realtime data
systems, Manning Publications.

Nadal S., Herrero V., Romero O., Abell A., Franch X., Vansummeren S., Valerio D. (2017).
A software reference architecture for semantic-aware Big Data systems, Information and
Software Technology, 90, 75-92.

Nadal S., Romero O., Abell A., Vassiliadis P., Vansummeren S. (2019). An integration-oriented
ontology to govern evolution in Big Data ecosystems, Information Systems, 79, 3-19.

Santos M.Y., Martinho B., Costa C. (2017). Modelling and implementing big data warehouses
for decision support, Journal of Management Analytics, 4, 2, 111-129.

Shvachko K., Kuang H., Radia S., Chansler R. (2010). The Hadoop distributed file system,
MSST2010, IEEE 26th Symposium on Mass Storage Systems and Technologies, Washington,
DC, USA, 2010, 110.

Solodovnikova D. (2017). Data Warehouse Evolution Framework, Proceedings of Spring Young
Researcher’s Colloquium on Database and Information Systems, Moscow, Russia, 2007, 4.

Solodovnikova D., Niedrite L., Kozmina N. (2015). Handling evolving data warehouse require-
ments, New Trends in Databases and Information Systems, Proceedings of ADBIS 2015 Short
Papers and Workshops, BigDap, DCSA, GID, MEBIS, OAIS, SW4CH, WISARD, Poitiers,
France, 2015, 334-345.

Solodovnikova D., Niedrite L., Niedritis A. (2019). On Metadata Support for Integrating Evolving
Heterogeneous Data Sources, New Trends in Databases and Information Systems, Proceed-
ings of ADBIS 2019 Short Papers and Workshops, Bled, Slovenia, 2019, 378-390.



Handling Evolution in Big Data Architectures 47

Song J., Guo C., Wang Z., Zhang Y., Yu G., Pierson J. (2015). HaoLap: A Hadoop based OLAP
system for big data, Journal of Systems and Software, 102, 167-181.

Stefanowski J., Krawiec K., Wrembel R. (2017). Exploring Complex and Big Data, International
Journal of Applied Mathematics and Computer Science, 27, 4, 669-679.

Sumbaly R., Kreps J., Shah S. (2013). The Big Data Ecosystem at LinkedIn, Proceedings of
ACM SIGMOD International Conference on Management of Data, New York, New York,
USA, 2013, 1125-1134.

Tardio R., Mate A., Trujillo J. (2015). An Iterative Methodology for Big Data Management,
Analysis and Visualization, Proceedings of the 2015 IEEE International Conference on Big
Data, Santa Clara, California, USA, 2015, 545-550.

Thakur G., Gosain A. (2011). DWEVOLVE: a Requirement Based Framework for Data Ware-
house Evolution, ACM SIGSOFT Software Engineering Notes, 36, 6, 1-8.

Thenmozhi M., Vivekanandan K. (2014). An Ontological Approach to Handle Multidimensional
Schema Evolution for Data Warehouse, International Journal of Database Management Sys-
tems, 6, 3, 33-52.

Vanhove T., Van Seghbroeck G., Wauters T., De Turck F., Vermeulen B., Demeester P. (2015).
Tengu: An experimentation platform for big data applications, Proceedings of IEEE 35th In-
ternational Conference on Distributed Computing Systems Workshops, Columbus, OH, USA,
2015, 42-47.

Wang J., Baker T., Balazinska M., Halperin D., Haynes B., Howe B., Hutchison D., Jain S., Maas
R., Mehta P., Moritz D., Myers B., Ortiz J., Suciu D., Whitaker A., Xu S. (2017). The Myria
Big Data Management and Analytics System and Cloud Services, CIDR.

Wojciechowski A. (2018). ETL workflow reparation by means of case-based reasoning, Informa-
tion Systems Frontiers, 20, 1, 21-43.

Wu L., Sumbaly R., Riccomini C., Koo G., Kim H.J., Kreps J., Shah S. (2012). Avatara: OLAP
for Web-scale Analytics Products, VLDB Endowment, 5, 12, 1874-1877.

Yuan Y., Wu Y., Feng X., Li J., Yang G., Zheng W. (2010). VDB-MR: MapReduce-based dis-
tributed data integration using virtual database, Future Generation Computer Systems, 26, 8,
1418-1425.

Zhuang Y., Wang Y., Shao J., Chen L., Lu W., Sun J., Wei B., Wu J. (2016). D-Ocean: an unstruc-
tured data management system for data ocean environment, Frontiers of Computer Science,
10, 2, 353-369.

Received November 4, 2019 , revised January 10, 2020, accepted February 4, 2020


