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Abstract. TFM (Topological Functioning Model) based transformations start from text fragments 

as inputs and end with source code. Automated processing of use case scenarios is likely to be 

more predictable than text in a formal style thanks to their structure. The goal of the research is to 

understand whether the differences in processing these two text forms are essential for getting core 

elements of a TFM, or even a structured form has essential limitations. The theoretical results 

illustrate that use case specifications may have more structured and less structured formats. Even 

in the former format, use case steps may contain explanations and even text fragments in a formal 

style that increases unpredictability. Analysis of text in the both cases requires part-of-speech 

tagging, lemmas, constituency and dependency parsing, coreference resolution, and language 

pattern matching. Thus, structuring the initial documents is questionable but cases when they are 

to be managed in projects.  
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1. Introduction 

Quality of an input model for a chain of model transformations is crucial. 

Transformation of models is one of the key elements in Model Driven Software 

Development (MDSD). The flagman of the MDSD is a framework called Model Driven 

Architecture (MDA) proposed by the Object Management Group (OMG) in 2001 (Miller 

and Mukerji, 2001). The MDA considers development of an architecture of a software 

system as a chain of enhancing transformations of models starting from computation 

independent to platform independent to platform specific models. In this view, the 

computation independent model (CIM) is a starting point or an input that further is 

enhanced with application logic and details specific to selected platforms. In an ideal 

case, a CIM must contain complete unambiguous knowledge on a problem (or business) 

domain or, in practice, it should be at least modifiable and keep integrity of knowledge. 

The CIM represents a problem (or business) domain from a computation independent 

viewpoint (Miller and Mukerji, 2001). This means that it is independent from 

“computational” particularities that have origin in application behaviour (or logic) and 

functionality of platforms. In the light of this, CIM representation means also must be 
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computation independent. They could be descriptions in prose (instructions, position 

descriptions, interview protocols), descriptions in structured text (e.g., use case 

scenarios, user stories, templates for requirements), graphical schemes (e.g., use case 

models, business process models in different notations such as BPMN (Business Process 

Model and Notation), structural models in different notation such as Entity-Relationship 

diagrams) and mathematical or physical formulas. All these means do not include any 

computation dependent information. 

An ideal CIM contains complete unambiguous knowledge. However, CIM 

completeness and unambiguity of representations are questionable since descriptions 

inherit natural language ambiguity, as well as schemes usually provide a fragmentary 

view on a problem domain or represent just one or several aspects of it. There must be a 

model that can serve as a ground onto which gathered knowledge could be projected and 

verified and as a starting point for further automated transformations.  

A model that has these abilities is a Topological Functioning Model (TFM). The 

TFM is based on principles of system theory and algebraic topology. It specifies a 

system in a holistic manner, showing its inner functionality and interaction with external 

systems at the high level of abstraction. The TFM can be manually (but according to 

precise rules) transformed into most used UML diagram types: class diagrams, activity 

diagrams, use cases with their specifications (Osis and Asnina, 2011a) and Topological 

UML (Donins et al., 2011) diagrams such as Topological Class diagrams, Topological 

Use Case diagrams, Activity diagrams, State Chart diagrams, Sequence and 

Communication diagrams (Osis and Donins, 2010). Application of the principles of the 

theoretical foundation of the model leads to discovering complete knowledge and 

verifying its accuracy. 

Sources of knowledge for the TFM differ in their representation formats, structure or 

its absence, and have different readiness for automated processing and projecting to the 

TFM. Automated processing of input sources is crucial since additional modelling 

requires additional resources like staff, budget and time. Automated processing in 

comparison with manual allows reducing time needed. However, what knowledge and of 

what quality could be processed and projected to the TFM is a question that requires 

additional research. The aim of this research is to clarify what an input form of 

knowledge sources, a text in a formal style or a use case scenario, has essential 

advantages for the TFM at the present. In this research focus is put on automated 

processing that includes less parsing and transforming notation elements but more 

application of Natural Language Processing (NLP) for acquiring and verifying 

knowledge from the corresponding text.  

The paper is organized as follows. Section 2 presents brief overview of the TFM and 

its place and role in TFM-based transformations. Section 3 discusses initial theoretical 

results on natural language processing in prose in a formal style and in a numbered step 

form of use case scenarios. Section 4 gives a brief overview in related work. Conclusion 

presents main results and speculations on issues and further research. 

2. Topological Functioning Model Based Transformations 

2.1. Chain of Transformations 

The meta-picture of the TFM driven transformations (Figure 1) illustrates a general 

vision of the TFM driven transformations. There are two groups of the input, i.e., 
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knowledge about a problem domain or system’s processes and data and knowledge about 

required processes and data of a corresponding sub-system. Pairs of a system and its 

subsystem can be, for example, an organization and its information system, or an 

information system and its implementation in software. Sources of knowledge on the 

system’s processes and data usually are presented in official documents, instructions, 

specifications, interviews with domain experts and so on, thus in text in a formal style. 

Requirements to the sub-system’s processes and data are presented in a form of 

structured text such as requirements specifications, use case scenarios, user stories and 

features.  
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Figure 1. Meta-picture of TFM-driven transformations at the CIM and PIM/PSM levels 

Taking knowledge from the first group, the TFM “as is” that describes the current 

situation is created (the left side). Taking requirements to the solution, the TFM “to be” 

that describes the desired processes and data is created (the right side). The two models 

are continuously mapped that means that changes in one model are projected onto the 

second. This allows checking requirements against existing functionality in the system. 

After that, the computation independent viewpoint on the solution domain is transformed 

to the platform independent (or specific) one. During this transformation, knowledge 

about the functionality and data are transformed onto the application constructs shown in 

Table 1 (Nazaruka and Osis, 2019). According to (Osis and Donins, 2017), the TFM can 

be transformed to the following Topological UML (that is an UML extension) diagrams: 

topological class diagrams, topological use case diagram, communication diagrams, and 

object diagrams; state diagrams; component and deployment diagrams. The final step of 

the transformations is generation of source code for selected platforms. 

In both cases creation of the TFM is manual at the present, but the vision is to 

generate the TFM from available texts using NLP techniques. The initial results of 

research on application of NLP techniques to the descriptions showed that it is not 

enough to deal just with basic NLP operations such as tokenization, part-of-speech 

tagging, chunking and Name Entity Recognition. In order to analyse text in prose 

analysis of dependencies between clauses, in complex noun phrases, in predicates and in 
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verb phrases is required as well as one of the most difficult tasks, i.e., discourse analysis 

in the text (Nazaruka and Osis, 2018). Besides that, processing of the text in prose (in a 

formal style) has issues related to a technical side and to particularities of a natural 

language (Nazaruka et al., 2019). Thus, parsing models and NLP outcome representation 

formats as well as a lack of needed knowledge, different structures of sentences and 

implicit synonyms may substantially affect the result.  

Table 1. Tracing TFM elements into elements of software architecture (Nazaruka and Osis, 2019): 

FR – a functional requirement, NFR – a non-functional requirement 

Requirements Elements in TFM Application constructs in UML 

FR and NFR Action A 
Activities, operations, messages, events, entry 

and exit effects 

FR and NFR Object Oi Classes, objects 

FR and NFR Result Ri 
Classes, objects, states, associations between 

certain classes 

FR Precondition ci Guards in behavioural diagrams, states 

FR Postcondition ci States 

FR Providers Pri Actors, classes, subject 

FR Executors Exi Actors, classes, objects 

FR Subordination S None 

Dependencies among 

FRs, and NFRs  

Cause-and-effect 

relation Ti 

Topological relationships, structural 

relationships, control flows, transitions 

Dependencies among 

FRs, and NFRs 
Functioning cycle 

Topological relationships, structural 

relationships, control flows 

The uncertainty of a natural language can be partially solved either by using machine 

learning or manual pre-processing of knowledge, e.g., using specifications of use case 

scenarios or user stories and exhaustive software requirements. Research on NLP 

techniques used for discovering cause-effect relations in texts in prose showed two clear 

trends (Nazaruka, 2019). The first is increasing the accuracy of the results using 

ontology banks, machine learning and statistical inferring. The second is decreasing the 

cost of these activities. In case of construction of software models, the main challenge is 

a lack of corpuses and statistical datasets for potential problem domains. Nevertheless, 

this issue can be potentially solved by limitation of those source documents to 

specifications (requirements, scenario, etc.) having less variability in expressing 

causality. 

2.2. Topological Functioning Model in a Nutshell 

The TFM is a formal mathematical model that was proposed by Janis Osis at Riga 

Technical University in 1969. It allows modelling and analysing functionality of the 

system (Osis and Asnina, 2011b). At the beginning this model has been invented for 

mathematical specification of functionality of complex mechanical systems (Osis and 

Asnina, 2011b). However, the system can be business, software, biological, mechanical 

or represent other domains. The  TFM  represents modelled functionality as a digraph 

(X, Θ), where X is a set of inner functional characteristics (called functional features) of 

the system, and Θ is a topology set on these characteristics in a form of a set of cause-

and-effect relations.  
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TFM models can be compared for similarities using a continuous mapping 

mechanism (Asnina and Osis, 2010). Since 1990s the TFM has been elaborated for 

software development (Osis et al., 2008a) starting from principles of object-oriented 

system analysis and design and ending with principles of the MDA.  

The TFM characteristics can be divided into topological and functioning properties 

(Osis and Asnina, 2011b). The topological properties take their origin in topological 

algebra. They are connectedness, neighbourhood, closure and continuous mapping.  

Connectedness ensure that all functional characteristics of the system depend from 

each other work in a direct or an indirect way. Neighbourhoods are sets, where each set 

is a functional characteristic of the system together with all its direct (with the step equal 

to 1) predecessors and followers. A mathematical operation of union of all 

neighbourhoods of the system’s inner functional characteristics is called “closure”. The 

closure is used to define the border of the system in a mathematical way. Since any TFM 

is a topological space, they can be compared for similarity or either refined or simplified. 

Thanks to continuous mapping between topological spaces the initial structure of the 

topological models is preserved during modifications.  

The functioning properties take their origin in the system theory. They are cause-

effect relations, cycle structures, inputs and outputs. The cause-effect relations are those 

dependencies between functional characteristics of the system that allow the system to 

function. The end of execution of one functional characteristic triggers initiation of other 

depending functional characteristics. Since we talk about the system that run (or 

function), these dependencies form a cycle (or cycles) of functionality. Behaviour of the 

system depends on input signals from the external environment as well as of output 

signals of the system (reaction) to the external environment. 

The composition of the TFM is presented in (Osis and Asnina, 2011b). Rules of 

composition and derivation of the TFM from the textual system description within 

TFM4MDA (TFM for Model Driven Architecture) are provided by examples and 

described in detail in several publications (Asnina, 2006; Osis et al., 2007, 2008b). The 

TFM can be manually created in the TFM Editor or can also be generated automatically 

from the business use case descriptions in the IDM toolset (Šlihte and Osis, 2014).  

The main TFM concept is a functional feature that represents a system’s functional 

characteristic, e.g., a business process, a task, an action, or an activity (Osis and Asnina, 

2011b). It can be specified by a unique tuple (1).  

                                   <A, R, O, PrCond, PostCond, Pr, Ex>           (1) 

where (Osis and Asnina, 2011b): 

• A is an object’s action,  

• R is a set of results of the object’s action (it is an optional element),  

• O is an object that gets the result of the action or a set of objects that are used in 

this action,  

• PrCond is a set of preconditions or atomic business rules,  

• PostCond is a set of post-conditions or atomic business rules,  

• Pr is a set of providers of the feature, i.e. entities (systems or sub-systems) 

which provide or suggest an action with a set of certain objects,  

• Ex is a set of executors (direct performers) of the functional feature, i.e. a set of 

entities (systems or sub-systems) which enact a concrete action. 
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The second TFM concept is a cause-effect relation between functional features. It 

defines a cause from which triggering of an effect occurs. Formal definitions of cause-

effect relations and their combinations are given in (Asnina and Ovchinnikova, 2015; 

Osis and Donins, 2017). The main definition states that a cause-effect relation is a binary 

relation that links a cause functional feature to an effect functional feature. In fact, this 

relation indicates control flow transition in the system. Cause-effect relations (and their 

combinations) may be joined by logical operators, namely, conjunction (AND), 

disjunction (OR), or exclusive disjunction (XOR). The logic of the combination of 

cause-effect relations denotes system behaviour and execution (e.g., decision making, 

parallel or sequential actions). 

Thus, at the beginning the elements of the functional features must be extracted from 

text. And then, the cause-effect relations between them must be identified using 

discourse analysis of the text. 

3. Text in a Formal Style and Use Case Scenarios as Inputs 

Let us consider several types of sources of knowledge that are used in software 

development and evaluate their suitability as inputs for composing the TFM using NLP 

outcomes. The formats are text in prose in a formal writing style and structured text in a 

form of use case scenarios. 

3.1. NLP using Stanford CoreNLP 

The Stanford CoreNLP toolkit (Manning et al., 2014) contains components that deal 

with tokenization, sentence splitting, part-of-speech tagging, morphological analysis 

(identification of base forms), NER (Name Entity Recognition), syntactical parsing, 

coreference resolution and other annotations such as gender and sentiment analysis. The 

NER component recognizes names (PERSON, LOCATION, ORGANIZATION, 

MISC – miscellaneous) and numerical (MONEY, NUMBER, DATE, TIME, 

DURATION, SET) entities. Phrases can be parsed using both constituent and 

dependency representations based on a probabilistic parser that is more accurate 

according to the parsers that relate to some predefined structures. Discovering basic 

dependencies helps in identification of actions and corresponding objects, results, modes 

(that can serve for identification of causal dependencies), executors and providers. 

Besides that, the Stanford CoreNLP implements mention detection and pronominal and 

nominal coreference resolution that helps in dealing with pronouns and noun phrases that 

denote concrete phenomena. 

For the given research Stanford CoreNLP version 3.9.2 is used. For POS tagging it 

uses tags listed in Penn Treebank II (Bies et al., 1995). In this research the following 

tags are mentioned: S – simple declarative clause, NN – noun, single, NNS – noun, 

plural, NP – noun phrase, PRP – preposition, RP – particle, VBZ – verb, 3rd person 

singular present, VBP – verb, non-3rd person singular present, VBD – verb, past tense, 

VBG – verb, gerund or present participle, VBN – verb, past participle, VB – base form, 

VP – verb phrase, IN – preposition or subordinating conjunction. 

Formal descriptions of patterns in Section 3.2 make a use of additional elements: ‘|’ 

is used for a sequence of alternatives; ‘[+ sub-pattern]’ – for optional elements; arrows 

‘edge_name:modifier’ – for edges between elements in the dependencies analysis 

where ‘element ’ is a source element and ‘ element’ is a target one; round brackets 
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‘( )’ contains elements in a noun phrase or verb phrase according to results of 

constituency parsing of text fragments. 

3.2. Identification of Core Elements of Functional Features 

Formal Text in Prose. Results of processing text in prose (in a formal style) using 

Stanford CoreNLP (Nazaruka et al., 2019) showed that one of the main difficulties is a 

variety of sentence structures that could express one and the same knowledge. 

Application of Stanford CoreNLP with explanatory examples is described in more detail 

in (Nazaruka et al., 2019) and is not discussed here. 

Identification of action A is searching instances of the pattern 

S(VP(VBZ|VBP|VBD|VBN|VBG|VB vi [+ compound:prtRP particle])  

nsubjpass|dobj  NP(NN|NNS|PRP n1)). The result vi must be returned in the infinitive 

form. The particle is optional. 

Identification of executors Ex is searching instances of the pattern 

S(VP(VBZ|VBP|VBD|VBN|VBG|VB vi [+ compound:prtRP particle])  

nsubj|nmod:agent  NP(NN|NNS|PRP ni)). The result ni must be returned in its original 

form. 

Identification of objects O and results R is searching of a direct object of the verb. 

There are two patterns for search. The first one is applicable for the active voice, since 

there is a direct object, i.e. a noun that fits the pattern 

S(VP(VBZ|VBP|VBD|VBN|VBG|VB vi [ + compound:prtRP particle])  dobj  

NP(NN|NNS|PRP n1)) for vi. The second one is applicable for the passive voice, when a 

noun fits the pattern S(VP(VBZ|VBP|VBD|VBN|VBG|VB vi 

[+ compound:prtRP particle])  nsubjpass  NP(NN|NNS|PRP n1)). After 

identification of the linked noun, the object and the result must be determined.  

If VP(vi) is not linked by nmod: but nmod:agent with another NN|NNS|PRP nj, then 

the following is true:  

 If NP(n1 compound n2) AND VP(NP(n1) nmod:poss|of|to|into|from|for 

NP(n2)), then the object Oi is equal to n1 and the result Ri is left empty. 

Otherwise, if one of such links does exist, the object Oi is equal to n2.  

 If NP(n1 compound n2), then Ri is equal to the NP(n1)+” of”. The object Oi 

is equal to n2. 

 If VP(NP(n1) nmod:poss|of|to|into|from|for NP(n2)) then Ri is equal to the 

NP(n1) [+ NP(n2)]caseIN preposition. The object Oi is equal to n2. 

Otherwise, if VP(vi) is linked with another NN|NNS|PRP n2 by nmod: but 

nmod:agent then the following is true: 

 The object Oi is equal to n2 from PP(NP(n2)). 

 The result Ri is equal to NP(n1) + IN preposition, where preposition is in the 

PP(NP(n2)). 

Processing sentences in prose even in a formal style has difficulties, since a natural 

language admits short incomplete sentences and complex noun phrases.  

As a result, A, O, R, Ex will be obtained together with the corresponding noun 

prepositions and verb particles. It can help in identification of structural relations 

between domain objects (entities) in the future. Providers Pr are hard to be identified, 

because they fit the same pattern as the executors. 
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Preconditions PreCond and postconditions PostCond can be expressed using 

multiple natural language constructs; therefore, in prose they must be identified during 

the so-called discourse analysis (Section 3.3). 

For illustration, let us consider several sentences. “The customer pays out the debt” 

(Figure 2) is in the active voice and very simple. It fits the pattern for action A, which is 

a verb “pay out”. An executor is a noun that matches the pattern with nsubj (nominal 

subject) edge, i.e., “customer”. Matching patterns for objects and results, n1 is a noun 

linked with “pays” using dobj (direct object) edge, i.e., “debt”. Then, following the 

analysis logic that “if NP(n1 compoundn2) AND VP(NP(n1) 

nmod:poss|of|to|into|from|for NP(n2)) then the object Oi is equal to n1 and the result Ri 

is left empty”, the result is the object “debt” and the empty result. 

 

 
Figure 2. Processing the sentence in the active voice 

 

 
 

Figure 3. Processing the sentence in the active voice with the compound direct object 



56  Nazaruka 

 

“The customer pays out the debt for the goods” is a light modification of the first 

sentence (Figure 3). Here, the action A and the executors are the same. But while 

analysing the direct object one can found that it fits the third pattern: If VP(NP(n1) 

nmod:poss|of|to|into|from|for NP(n2)) then Ri is equal to the NP(n1)[NP(n2)] 

caseIN preposition. The object Oi is equal to n2. Thus, the object is a noun “goods” 

and the result is “the debt for”. 

The next sentence in the passive voice “The goods debt is paid out by the customer” 

(Figure 4) fits the pattern for a verb linked with a noun n1 by nsubjpass. The action is the 

verb “pay out”. The executor fits the pattern with nmod:agent and is the noun 

“customer”. The noun n1 “debt” fits the pattern in the rule “If NP(n1 compound n2), 

then Ri is equal to the NP(n1)+” of”; and the object Oi is equal to n2”. Hence, the result is 

“the goods debt of” and the object is “goods”. The whole noun phrase is kept in order 

not to lose some relevant knowledge. 

 

 
Figure 4. Processing the sentence in the passive voice with the compound direct object 

       Certainly, noun phrases can also contain adjectives and adverbs indicating 

characteristics of objects those can lead to further specialization of them. The same is 

with verb phrases that may include modifiers (such as may, could, should and so on) 

indicating on obligation of an action. Besides that, verb phrases can form dependencies 

between clauses of a complex sentence. For example, lets us take two sentences “The 

customer pays out the debt to close its credit obligations” and “The customer pays out 

the debt and closes its credit obligations” (Figure 5).  
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Figure 5. Dependencies analysis in the complex sentences 

The former indicates the intention of the action “pay out” to perform the action 

“close” using the adverb clause, the latter indicates a logical sequence of the actions 

“pay out” and “close”. In both cases two functional features will be extracted. However, 

according to the current sequence of patterns the former will lose the executor of the 

action “close”. In this research, such constructs are omitted. 

Use Case Scenarios. Use cases can be expressed in both informal and structured 

manners (as a flow of numbered steps, in a table form, or as a diagram). Processing of 

the former is the same as processing of the text in prose. Processing of the latter is a 

combination of NLP tasks and scenarios structure analysis.  

Use case scenario structures may have different forms. For example, one of the most 

completed forms is presented by Winters and Schneider (Schneider and Winters, 2001), 

where it has the following parts: a use case name, a brief description, a context diagram 

that is a part of the entire use case diagram, preconditions of a use case, a flow of events 

that includes a basic path and alternative paths, postconditions of a use case, a 

subordinate use case diagram, subordinate use cases, an activity diagram for the flow of 

events, a view of participating classes, sequence diagrams, a user interface, business 

rules, special requirements, other artifacts, and outstanding issues. In this research, 

manually proceeded scenarios in the numbered step form are considered.  

A use case scenario in this form usually has predefined keywords such as “the use 

case begins when” – for an entry point into the use case, “for each… end loop” – for 

iterations, “and the use case ends” – for an exit point form the use case, “basic path” – a 

title of the section of the normal flow of steps, “alternative paths”- a title for the section 

of branches in the execution logic, “Alternative <number: <explanation>” – a title of a 

branch in the execution logic, “special requirements” – a section for non-functional 

requirements, as well as others used in a project. Thus, analysis of a use case scenario 

starts from identifying the structure, the keywords and then analysing the corresponding 

descriptions. 

Application of NLP to use case scenarios is partially implemented in the IDM 

(Integrated Domain Modelling) toolset, where processing of a use case scenario is 

performed using the Stanford Parser Java Library for identifying the executors Ex and 

the description of the functional feature D that is the verb phrase VP from the text of a 

step in a scenario (Osis and Slihte, 2010; Slihte et al., 2011).  

The prerequisite for parsing is that sentences of use case steps must be in the simple 

form to answer the question “Who does what?”, e.g., “Librarian checks out the book”. 
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This structure of a sentence is a recommended one for use case steps (Schneider and 

Winters, 2001; Leffingwell and Widrig, 2003). 

Parsing in the IDM is done according to these steps: 

 Identify coordinating conjunctions to split a sentence into several clauses, and, 

thus, several functional features; 

 Identify the verb phrase (VP tag) in a clause that is considered as a union of action 

A, object O and result R (if it is indicated) and forms the so-called description of 

the functional feature D; 

 Identify the noun phrase (NP tag) that is marked as executor Exi if it meets the 

same noun in the list of actors for the use case; 

 Preconditions and postconditions are taken directly from the corresponding 

preceding step in the use case (if they are specified); 

 Topological relations are equal to the sequence of use case steps. 

As a result, the elements A, R, O are implicitly located in the description of functional 

feature D, and each step has a single Exi. In order to extract those elements from D, the 

following active voice patterns must be analysed. 

Identification of action A is searching instances of the pattern 

S(VP(VBZ|VBP|VBD|VBN|VBG|VB vi [+ compound:prtRP particle])  dobj  

NP(NN|NNS|PRP n1)). The result vi must be returned in the infinitive form. The particle 

is optional. 

Identification of executors Ex is searching instances of the pattern 

S(VP(VBZ|VBP|VBD|VBN|VBG|VB vi [+ compound:prtRP particle])  nsubj  

NP(NN|NNS|PRP ni)). The result ni must be returned in its original form. This means 

that a number of executors is greater than a number of actors, since the system is an 

executor but is not an actor. Providers Pr fits to the same pattern. 

Identification of objects O and results R. First, a noun that fits the pattern 

S(VP(VBZ|VBP|VBD|VBN|VBG|VB vi [ + compound:prtRP particle])  dobj  

NP(NN|NNS|PRP n1)) for vi must be found. Then, the object and the result must be 

determined in the same way as in the formal text in prose.  

Preconditions PrCond, if they are specified for use case steps, usually has a 

predefined form “IF/WHEN<condition> THEN: step(s)”. Therefore, a clause S can be 

checked for this pattern. The text between IF/WHEN and THEN part must be taken as a 

precondition to a functional feature or the first feature in the block of steps. Sometimes, 

the text may contain additional functional characteristic and form a separate functional 

feature. Another difficulty is that the IF/WHEN…THEN form is not prescribed, then 

analysis of conditionals is required that is not a trivial case (Section 3.3). 

Postconditions PostCond in a use case describe the state of the system after the step 

or the use case execution. A postcondition must be expressed explicitly, otherwise it 

must be inferred from the context that also is not a trivial case (Section 3.3).  

3.3. Identification of Cause-Effect Relations 

Cause-effect relations are binary topological relations between functional features. They 

represent that successful termination of one functional feature, a cause, triggers initiation 

of another, causally dependent, functional feature called an effect. Cause-effect relations 

may form groups of incoming and outgoing relations. A group may have subgroups of 

the relations joined by using one of logical operators AND, OR, or XOR.  
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Connection between a cause and an effect is represented by a certain conditional 

expression, the causal implication. It is established by nature or rules. In causal 

connections “something is allowed to go wrong”, whereas logical statements allow no 

exceptions. Using this property of cause-effect relations a logical sequence, wherein the 

execution of the precondition guarantees the execution of the action, can be prescinded. 

This means that even if a cause is executed, the corresponding effect can be not 

generated because of some functional damage (Nazaruka, 2019). 

Formal Text in Prose. Cause-effect relations can be expressed implicitly and explicitly. 

The thorough analysis of implicitly and explicitly expressed relations (Khoo et al., 2002) 

illustrated that the latter relations use causal links, causative verbs, resultative 

constructions, conditionals as well as causative adverbs, adjectives and prepositions. The 

former relations are usually inferred by a reader associating information in the text with 

their background knowledge (Khoo et al., 2002; Solstad and Bott, 2017; Ning et al., 

2018).  

Theories for identification, modelling and analysis of cause-effect relations have their 

origin in psycholinguistics, linguistics, psychology and artificial intelligence (Waldmann 

and Hagmayer, 2013). According to Waldmann and Hagmayer, those of theories 

attempting to reduce causal reasoning to a domain-general theory can be grouped as 

associative theories, logical theories and probabilistic theories. Each group has 

limitations in identification of causes and effects. However, logical theories seem to be 

more suitable to software development in processing verbally expressed information, 

since they model causal reasoning as a special case of deductive reasoning. Logical 

theories frequently analyse conditionals (if/when…then constructs) in the text. Although 

conditionals do not distinguish between causes and effects. In the formal text 

(instructions, descriptions of processing, etc.) they usually have a form “if/when <a 

cause occurs> then <an effect occurs>” as well as temporal priorities can be helpful in 

distinguishing them (Solstad and Bott, 2017; Pearl, 2019). Unfortunately, if/when…then 

constructs can be also used for simple sequential storytelling without any causality 

between parts of the sentence.  Moreover, they may form counterfactual conditionals 

(with words might, would, if only) that are hard for NLP analysis (Solstad and Bott, 

2017), e.g., “If a librarian would not have ordered a book, a manager assistant would 

have”. 

Thus, processing and analysis of causes and effects in the text in prose must be 

performed at clause/sentence and discourse levels as well as conditionals and temporal 

reasons must be checked  

Let us consider each level in more detail (Table 2): 

 A clause is a group of verbs that includes at least a subject and a verb. A clause 

can be independent and express a complete thought. An independent clause is 

considered as a standalone sentence or as a part of the sentence of several 

clauses. A dependent clause can act as a noun, an adjective, or an adverb. A 

sequence of sentences forms a discourse. At the clause/sentence level a cause-

event and an effect-event are analysed (Solstad and Bott, 2017), while at the 

discourse level one deals with propositions instead of events (Kang et al., 2017; 

Solstad and Bott, 2017). Causal verbs are used for event identification, while 

causal links are suitable for identification of causal dependencies between 

clauses and sentences. 
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Table 2. Processing and analysis of causes and effects in the text in a formal style 

Processed parts Parts-of-speech, constructs, patterns 

Clause/sentence Pattern: [[event1]] CAUSE [[event2]] 

More researched constructs are: 

- causal links: adverbial (so, hence, therefore, etc.), prepositional (because 

of, on account of, etc.), subordination (because, as, since, so…that, etc.), 

clause-integrated (that is why, the result is/was, etc.); 

- causative verbs (including action verbs as a part of this verb group). 

Less researched are: 

- resultative constructions (a state of the direct object after the action); 

- causative adverbs (e.g., successfully, consequentially, mechanically), 

adjectives and prepositions; 

- multiple causes and effects. 

Discourse [[proposition1]] CAUSE [[proposition2]]; Connections between causal 

relations expressed either by causal links or implicitly by human inferring 

of reasons and explanations (sometimes even in the same sentence). 

Conditionals If/When…then constructs and counterfactual conditionals that indicate the 

possible state of the world in case of an action. 

Temporal 

reasons 

Joint consideration of causal and temporal models helps in correct 

identification of counterfactual clauses as well as more valuable 

identification of causal relations. 

 

 Conditionals If/When…then may either fit the pattern with events or indicate a 

state of the object before some event. In the former case, the clause of event 1 

will be a cause functional feature for event 2. In the latter case, a phrase from the 

IF/When part will be a precondition for the functional feature of event 2.  

 Attention to analysis of temporal aspects has become greater since 2016 (Mirza, 

2014; Asghar, 2016; Mostafazadeh et al., 2016; Ning et al., 2018). Temporal 

relations may indicate hidden causality, not only simple sequence of events, 

especially for counterfactual clauses (Ning et al., 2018). 

Use Case Scenarios. In the scenarios in the numbered step form, topology is determined 

according to the sequences of steps specified in flows of the scenarios and explicitly 

indicated dependencies between the steps and subordinated use cases. Analysing 

different alternative forms for a use case specification (Schneider and Winters, 2001; 

Leffingwell and Widrig, 2003), it can be concluded that the causal dependencies can be 

expressed by the following means: 

 A sequence of steps. Each step has its number and represents an action (or event) 

that must be done. Thus, successful termination of each preceding step initiates 

its direct subsequent step. In other word, causality is a logical sequence of steps. 

 Redirection to the indicated step. The redirection may be expressed either using 

some predefined phrases, e.g., “the use case continues at <flow> step 

<number>”, or another phrase with the similar meaning. 

 Redirection to an alternative flow. There are two possibilities. If an alternative 

flow takes only a few sentences, it can be located directly within the flow-of-

events section. Otherwise, a separate section is recommended. In the latter case 

the transition can be expressed with the similar phrases as in the previous point. 

In the former, a group precondition indicates an alternative sequence of steps, 
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where causality is the sequence. However, sometimes an alternative flow is not 

structured and then analysis of sentences or discourse is required. 

 Redirection from an alternative flow. Sometimes, a basic flow contains only the 

“typical” sequence of steps without any redirection to alternative flows. Then a 

point, where an alternative starts, is indicated in the alternative itself using 

phrases like “In step <number>, <precondition>, <step/event>”.  

 Redirection to a subordinated use case (included and extending). An included 

use case has its own name that is used as a marker with a keyword “include” to 

express a transition to it. An extending use case is invoked using its name as a 

marker at the certain extension point either in a flow of events or in a special 

section of extension points. A precondition also must be indicated. 

 Cycle constructs. In order to indicate iterative sequences constructs For each 

<element> … end loop and While <action/event>… end loop are used. 

 A dependent clause. This clause can be inferred by analysing the causal links 

(Table 2): adverbial, prepositional, subordination and clause integrated. For 

example, “The customer enters a number of the product to make an order”. A 

clause “to make an order” acts as an adverb. But “making an order” is a separate 

event that must be analysed whether it is a cause for the “entering” or it is just an 

explanatory statement. 

 A dependency link to another independent use case. In a typical template such a 

link is not specified. However, if this dependency is indicated, a name of another 

independent use case is located in the certain section of the specification.  

Analysis of cause-effect relations in a use case specification is easier thanks to in most 

cases explicitly indicated causality. However, steps may contain short discourses that 

must be analysed in the same way as text in prose. 

3.4. Summary 

Table 3 summarizes what must be analysed in the both formats. The benefit of a 

structured scenario lies mostly in identification of causal dependencies between 

sentences, postconditions, preconditions (less), and iterations. In other words, results of 

analytical work done by a human and expressed by certain structures is convenient for 

parsing. 

However, huge work on NLP still remains. Identification of an action, objects and 

results, executors, and providers requires part-of-speech tagging, lemma analysis, 

tokenization, constituency and dependency parsing and analysis. Besides that, a 

description of a step in a scenario may be quite detailed and include explanations and 

sequential actions. Thus, such parts must also be analysed using sentence and discourse 

analysis. 

Taking into consideration the results, benefits of a structured form for automated 

processing are evident but are not critically essential. The reason is that requirements 

(even in a scenario) are written by a human in a natural language. The large part of 

essential knowledge may be described there and is the same dependent on the quality of 

NLP. Thus, benefit of converting existing documents to a more structured form, 

especially when constructing a TFM of the existing system, is questionable. 

Nevertheless, use cases have proved themselves as a good means of capturing 

requirements. They contain knowledge already inferred by a human that makes it easier 
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to extract it in an automated way. This means that they can be successfully used for 

construction of a TFM of the planned subsystem. 

 
Table 3. Extracting TFM elements from text fragments using NLP and structure parsing (SP) 

TFM element Text in a formal style Use case scenario 

Functional feature <vi, R, O, PrCond, PostCond, Ex, Pr> 

Action NLP ― a verb vi from VP with its 

particle linked with a noun n1 from 

NP with a link nsubjpass or dobj. 

NLP ― a verb vi from VP with its 

particle linked with a noun n1 

from NP with a link dobj. 

Object and 

Result 

NLP ― related noun phrase NLP ― a related noun phrase 

Preconditions NLP ― discourse analysis, 

conditionals (*SP). Could be 

omitted in the sentence. 

SP ― a part “Preconditions”. 

NLP ― conditionals (*SP). 

Postconditions NLP ― discourse analysis. Could be 

omitted in the sentence. 

SP ― a part “Postconditions” 

Executors NLP ― a noun ni that is a target of a 

link nsubj or nmod:agent from a 

verb vi. Could be omitted in the 

sentence. 

NLP ― a noun ni that is a target of a 

link nsubj from a verb vi. Must be 

presented in the first sentence of a 

step but could be omitted in the 

sequential sentences within the 

step. 

Providers NLP ― discourse analysis. May fit to 

the pattern for executors. 

NLP ― “the system” or another 

nickname used in the 

specification. May fit the pattern 

for executors. 

Cause-effect relation 

Sentence NLP ― the pattern ‘<event> CAUSE 

<event>’; causal links, causative 

verbs, adverbs, adjectives, 

preconditions; resultative 

constructions. 

NLP ― a dependent clause, cycle 

constructs (see Iterations). 

Discourse NLP ― the pattern ‘<proposition> 

CAUSE <proposition>’; causal 

links, explanations, inferring; 

temporal reasoning. 

SP ― a sequence of steps; a 

dependency link to another 

independent use case. 

NLP or parsing ― a redirection to 

an indicated step, an alternative 

flow, or a subordinate use case, or 

a redirection from an alternate 

flow; cycle constructs (see 

Iterations). 

Iterations 

(repetitive 

action) 

NLP ― language constructs analysis; 

inferring from the context. 

NLP or SP ― for each 

<element>…end loop; while 

<action/event>…end loop. 
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4. Related Work 

Looking at the CIM as an input for further transformation to analytical or design models, 

descriptions in prose, structured text, graphical schemes for behavioural and structural 

models are wide used. The main attention in recent research is put on graphical schemes. 

Taking as an input graphical schemes it is possible to get a design model in UML. 

For example, Data Flow Diagram (DFD) can be transformed to use case diagrams, 

activity diagrams, sequence diagrams and domain diagrams, which are the base for 

further obtaining of class diagrams (Kardoš and Drozdová, 2010). The transformation to 

behaviour diagrams allows correct mapping to control flows between activities, 

messages between objects, but a mapping to domain diagrams is incomplete. This 

approach allows defining concepts and navigations among them, but information about 

structural relationships and multiplicity must be added by a modeler. 

Transformation from BPMN models to use cases (Kriouile et al., 2015) to 

behavioural and domain classes models resulted in complete acquisition of control flows 

and message flows, however, the domain classes model contained only aggregation 

relationships obtained from the BPMN pools and lanes (Kriouile et al., 2014). Using 

structural business rules allows keeping knowledge about terms and facts, as well as 

relations among them (Bousetta et al., 2013), thus getting necessary static knowledge 

such as names of classes, compositions and aggregations among them, 

generalization/specialization relationships, navigations, and multiplicity in associations 

in semi-automatic way. The business rules are expressed by natural languages and 

supplemented by Object Constraint Language (OCL). Transformation from BPMN 

diagrams to UML class diagrams and state diagrams for each class presented in (Mokrys, 

2012) also requires additional participation of a modeler in order to refine relationships 

among classes. 

Transformation from use cases and activity diagrams to a class diagram, where 

control flows of the activity diagrams are transformed to bidirectional navigations with 

many-to-many multiplicity in the class diagram still requires human participation to 

refine interclass relationships (Rhazali et al., 2015, 2016). Transformation from a 

business process model (containing both manual and automated activities as well as data 

objects) and requirements models in a form of use cases to be automated to support the 

business activities expressed in terms of the activity diagram (Kherraf et al., 2008) into a 

process component that is linked with various entity components supplemented with 

roles applies a set of patterns and four target archetypes: Moment-Interval that usually 

corresponds to a process component, and PPT (Party, Place, Thing), Role and 

Description that correspond to an entity component. A use case model extended with 

data objects and business rules in an alternative to the natural language, SBVR 

(Semantic of Business Rules and Vocabulary), similarly to (Bousetta et al., 2013) are 

transformed to the class diagram. However, elements in it are linked with bidirectional 

associations and require additional refinement (Essebaa and Chantit, 2016). 

Another more advanced approach implemented in a tool called ReDSeeDS 

(Requirements-Driven Software Development System) was developed during the 

European ICT project (2008-2012), which main objective was solving a problem of the 

complexity of requirements descriptions (ReDSeeDS, 2020). Requirements in this tool 

are presented as use case scenarios, where a developer may manually indicate nouns, 

noun phrases, verb phrases and assign their meaning in a domain model. According to 

these marks the tool automatically creates actors, classes and methods. The obtained 
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model can be transformed to code using predefined transformation patterns. The code is 

executable (it has presentation, controller and model layers); however, it should be 

manually supplemented (Kalnins et al., 2011; Smialek and Straszak, 2012). The idea 

implemented in the tool is very similar to the researched one with one distinction – 

identification of nouns, verbs, corresponding phrases and their meanings must be 

conducted in an automated way. 

Thus, the static viewpoint of the system represented as a [domain] class diagram and 

proposed in many approaches is limited with relationships obtained from control flows. 

It is possible to derive aggregation and composition (from BPMN models), and 

(intuitive) bidirectional navigation between domain classes. More advanced 

characteristics such as a specific navigation, multiplicity and roles in associations as well 

as generalization/specialization must be added manually or explicitly defined in business 

rules specified in formalized (or controlled) natural language, i.e. by using a predefined 

subset of a natural language or in the form of SBVR statements. Thus, most of these 

approaches are focused on processing graphic structures or pre-defined structures for 

knowledge (as in SBVR).  

In recent years, analysis of informal and semiformal texts gained significant results 

using a deep learning approach. The open-source SUMMA platform (Germann et al., 

2018) offers extraction and storage of factual claims from recorded live broadcast, 

spoken contents and text as well as storyline clustering and cluster summarization. The 

text is generated from semantic graphs produced by the parsing module. Identification of 

text is based on semantic-syntactic valence patterns recognition extracted from 

FrameNet annotated corpora (Dannélls and Gruzitis, 2014). The idea of the use of the 

semantic-syntactic valence patterns is interesting and in general features echoes our idea 

of text processing. However, patterns for TFM elements must be more refined. 

5. Conclusion 

Processing of use case scenarios has its benefits thanks to preliminary analytical work 

done by a human and results of it expressed in a structured form. The advantage is more 

predictable identification of causal dependencies between functional features, 

postconditions, preconditions (to a lesser extent), and cycle structures. However, a 

scenario may contain expanded explanations, details, even sequences of events and small 

alternative flows. This means that natural language processing could not be omitted for 

identification of actions, objects, results, preconditions, executors and providers as well 

as a sub-set of cause-effect relations. Moreover, NLP tasks are the same as in case of text 

fragments in a formal style, i.e., part-of-speech tagging, lemma analysis, tokenization, 

constituency and dependency parsing and analysis. 

Results of identification of those elements are used in composing a TFM of the 

system “as is” and a TFM of its planned sub-system or sub-systems “to be”. TFM 

elements helps in discovering the same functionality as well as similarities and 

differences in behaviour of systems.  

Having two independent sources of knowledge, namely, documents in a formal style 

for the “as is” case and use case scenarios for the “to be” case, and continuous mapping 

between the TFMs allows projecting functional features to make an analysis of 

functional coverings, completeness, similarities and differences. This increases quality of 

extracted knowledge, quality of the built root model, the TFM, that further is to be 

propagated to the design model and the source code. 
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Further research direction is closely related to NLP application to text fragments in a 

formal style. At the beginning, a set of language constructs and patterns for relations 

among objects participating in an action must be defined. Then, the most unresearched 

part, namely, cause-effect relations identification at the sentence and discourse levels 

must be solved as well as multi causes and multi effects relations. The potential results 

may be used for event flows identification in text and automated creation of use cases 

and user stories (or other similar representation formats). 

List of abbreviations used 

MDSD – Model Driven Software Development 

MDA – Model Driven Architecture 

OMG – Object Management Group 

CIM – Computation Independent Model 

BPMN – Business Process Model and Notation 

TFM – Topological Functioning Model [of a system] 

UML – Unified Modelling Language 

NLP – Natural Language Processing 

IDM – Integrated Domain Modelling 

NER – Name Entity Recognition 

DFD – Data Flow Diagram 

OCL – Object Constraint Language 

SBVR – Semantic of Business Rules and Vocabulary 

References 

Asghar, N. (2016) Automatic Extraction of Causal Relations from Natural Language Texts : A 

Comprehensive Survey, CoRR, abs/1605.0. Available at: http://arxiv.org/abs/1605.07895. 

Asnina, E. (2006) The Computation Independent Viewpoint: a Formal Method of Topological 

Functioning Model Constructing, Applied computer systems, 26, 21–32. 

Asnina, E., Osis, J. (2010) Computation Independent Models: Bridging Problem and Solution 

Domains, In: Proceedings of the 2nd International Workshop on Model-Driven Architecture 

and Modeling Theory-Driven Development. Lisbon, SciTePress - Science and and 

Technology Publications, 23–32. doi: 10.5220/0003043200230032. 

Asnina, E., Ovchinnikova, V. (2015) Specification of decision-making and control flow branching 

in Topological Functioning Models of systems, In: ENASE 2015 - Proceedings of the 10th 

International Conference on Evaluation of Novel Approaches to Software Engineering. 

Lisbon, SciTePress - Science and and Technology Publications, 364–373 

Bies, A., Ferguson, M., Katz, K., MacIntyre, R. (1995) Bracketing Guidelines for Treebank II 

Style. Available at: http://languagelog.ldc.upenn.edu/myl/PennTreebank1995.pdf. 

Bousetta, B., Beggar el, O., Gadi, T. (2013) A methodology for CIM modelling and its 

transformation to PIM, Journal of Information Engineering and Applications, 3(2), 1–21. 

Available at: www.iiste.org. 

Dannélls, D., Gruzitis, N. (2014) Controlled Natural Language Generation from a Multilingual 

FrameNet-Based Grammar, In: Davis, B., Kaljurand, K., Kuhn, T. (eds) Controlled Natural 

Language. Cham, Springer International Publishing, 155–166. 

Donins, U., Osis, J., Slihte, A., Asnina, E., Gulbis, B. (2011) Towards the refinement of 

topological class diagram as a platform independent model, In: Čaplinskas, A. et al. (eds) 

Proceedings of the 3rd International Workshop on Model-Driven Architecture and 

Modeling-Driven Software Development, MDA and MDSD 2011, In: Conjunction with 

ENASE 2011. Vilnius, Žara, 79–88. 

http://www.iiste.org/


66  Nazaruka 

 

Essebaa, I., Chantit, S. (2016) Toward an automatic approach to get PIM level from CIM level 

using QVT rules, In: 2016 11th International Conference on Intelligent Systems: Theories 

and Applications (SITA). Mohammedia, IEEE, 1–6. doi: 10.1109/SITA.2016.7772271. 

Germann, U., Miranda, S., Nogueira, D., Liepins, R., Gosko, D., Barzdins, G. (2018) The 

SUMMA Platform: A Scalable Infrastructure for Multi-lingual Multi-media Monitoring, In: 

Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics-

System Demonstrations. Association for Computational Linguistics, 99–104. 

Kalnins, A., Smialek, M., Kalnina, E., Celms, E., Nowakowski, W., Straszak, T. (2011) Domain-

Driven Reuse of Software Design Models, In: Osis, J., Asnina, E. (eds) Model-Driven 

Domain Analysis and Software Development. Hershey, PA, IGI Global, 177–200. doi: 

10.4018/978-1-61692-874-2.ch009. 

Kang, D., Gangal, V., Lu, A., Chen, Z., Hovy, E. (2017) Detecting and Explaining Causes from 

Text For a Time Series Event, In: Proceedings of the 2017 Conference on Empirical 

Methods in Natural Language Processing, The Association for Computational Linguistics, 

2758–2768. 

Kardoš, M., Drozdová, M. (2010) Analytical method of CIM to PIM transformation in model 

driven architecture (MDA), Journal of Information and Organizational Sciences, 34(1), 89–

99. 

Kherraf, S., Lefebvre, É., Suryn, W. (2008) Transformation from CIM to PIM Using Patterns and 

Archetypes, In: 19th Australian Conference on Software Engineering (aswec 2008), IEEE, 

338–346. doi: 10.1109/ASWEC.2008.4483222. 

Khoo, C., Chan, S., Niu, Y. (2002) The Many Facets of the Cause-Effect Relation, In: Green, R., 

Bean, C. A., Myaeng, S. H. (eds) The Semantics of Relationships: An Interdisciplinary 

Perspective. Dordrecht, Springer Netherlands, 51–70. doi: 10.1007/978-94-017-0073-3_4. 

Kriouile, A., Addamssiri, N., Gadi, T., Balouki, Y. (2014) Getting the static model of PIM from 

the CIM, In: 2014 Third IEEE International Colloquium in Information Science and 

Technology (CIST). Tetouan, IEEE, 168–173. doi: 10.1109/CIST.2014.7016613. 

Kriouile, A., Addamssiri, N., Gadi, T. (2015) An MDA Method for Automatic Transformation of 

Models from CIM to PIM, American Journal of Software Engineering and Applications. 

Science Publishing Group, 4(1), 1–14. doi: 10.11648/j.ajsea.20150401.11. 

Kriouile, A., Gadi, T., Balouki, Y. (2013) CIM to PIM Transformation: A Criteria Based 

Evaluation, In: J.Computer Technology & Applications, 4(4), 616–625. 

Leffingwell, D., Widrig, D. (2003) Managing Softqare Requirements: a Use Case Approach. 2nd 

edn. Addison-Wesley. 

Manning, C. D., Surdeanu, M., Bauer, J., Finkel, J., Bethard, S. J., McClosky, D. (2014) The 

Stanford CoreNLP Natural Language Processing Toolkit, In: Proceedings of the 52nd 

Annual Meeting of the Association for Computational Linguistics: System Demonstrations, 

55–60. Available at: https://nlp.stanford.edu/pubs/StanfordCoreNlp2014.pdf. 

Miller, J., Mukerji, J. (2001) Model Driven Architecture ( MDA ), Architecture Board ORMSC. 

Available at: http://www.omg.org/cgi-bin/doc?ormsc/2001-07-01. 

Mirza, P. (2014) Extracting Temporal and Causal Relations between Events, In: Proceedings of 

the ACL 2014 Student Research Workshop. Baltimore, Maryland, USA: Association for 

Computational Linguistics, 10–17. doi: 10.3115/v1/P14-3002. 

Mokrys, M. (2012) Possible transformation from Process Model to IS Design Model, In: ICTIC - 

PROCEEDINGS IN CONFERENCE OF INFORMATICS AND MANAGEMENT SCIENCES. 

EDIS - Publishing Institution of the University of Zilina, 71–74. 

Mostafazadeh, N., Grealish, A., Chambers, N., Allen, J., Vanderwende, L. (2016) CaTeRS : 

Causal and Temporal Relation Scheme for Semantic Annotation of Event Structures, In: 

Proceedings of the Fourth Workshop on Events. San Diego, California: Association for 

Computational Linguistics, 51–61. doi: 10.18653/v1/W16-1007. 

Nazaruka, E. (2019) Identification of Causal Dependencies by using Natural Language Processing: 

A Survey, In: Damian, E., Spanoudakis, G., and Maciaszek, L. (eds) Proceedings of the 14th 

International Conference on Evaluation of Novel Approaches to Software Engineering - 

Volume 1: MDI4SE. SciTePress, 603–613. doi: 10.5220/0007842706030613. 



 Processing Use Case Scenarios and Text in a Formal Style  67 

 

Nazaruka, E., Osis, J. (2018) Determination of Natural Language Processing Tasks and Tools for 

Topological Functioning Modelling, In: Proceedings of the 13th International Conference 

on Evaluation of Novel Approaches to Software Engineering. Funchal, Madeira, Portugal, 

SCITEPRESS – Science and Technology Publications, Lda., 501–512. 

Nazaruka, E., Osis, J. (2019) The Formal Reference Model for Software Requirements, In: 

Damiani, E., Spanoudakis, G., and Maciaszek, L. (eds) Evaluation of Novel Approaches to 

Software Engineering. ENASE 2018. Communications in Computer and Information 

Science, vol 1023. Springer, Cham, 352–372. doi: 10.1007/978-3-030-22559-9_16. 

Nazaruka, E., Osis, J., Griberman, V. (2019) Extracting Core Elements of TFM Functional 

Characteristics from Stanford CoreNLP Application Outcomes, In: Damian, E., 

Spanoudakis, G., and Maciaszek, L. (eds) Proceedings of the 14th International Conference 

on Evaluation of Novel Approaches to Software Engineering - Volume 1: MDI4SE. 

SciTePress, 591–602. doi: 10.5220/0007831605910602. 

Ning, Q., Feng, Z., Wu, H., Roth, D. (2018) Joint Reasoning for Temporal and Causal Relations, 

In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics 

(Long Papers). Melbourne, Australia, Association for Computational Linguistics, 2278–

2288. 

Osis, J., Asnina, E. (2008) Enterprise Modeling for Information System Development within 

MDA, In: Proceedings of the 41st Annual Hawaii International Conference on System 

Sciences (HICSS 2008). Waikoloa, USA, IEEE, 490–490. doi: 10.1109/HICSS.2008.150. 

Osis, J., Asnina, E. (2011a) Derivation of Use Cases from the Topological Computation 

Independent Business Model, In: Model-Driven Domain Analysis and Software 

Development. Hershey, PA, IGI Global, 65–89. doi: 10.4018/978-1-61692-874-2.ch004. 

Osis, J., Asnina, E. (2011b) Topological Modeling for Model-Driven Domain Analysis and 

Software Development: Functions and Architectures, In: Model-Driven Domain Analysis 

and Software Development: Architectures and Functions. Hershey, PA, IGI Global, 15–39. 

doi: 10.4018/978-1-61692-874-2.ch002. 

Osis, J., Asnina, E., Grave, A. (2007) MDA oriented computation independent modeling of the 

problem domain, In: Proceedings of the 2nd International Conference on Evaluation of 

Novel Approaches to Software Engineering - ENASE 2007. Barcelona, INSTICC Press, 66–

71. 

Osis, J., Asnina, E, Grave, A. (2008a) Computation Independent Representation of the Problem 

Domain in MDA, e-Informatica Software Engineering Journal, 2(1), 29–46. Available at: 

http://www.e-informatyka.pl/index.php/einformatica/volumes/volume-2008/issue-1/article-

2/. 

Osis, J., Asnina, E., Grave, A. (2008b) Formal Problem Domain Modeling within MDA, In: Filipe, 

J. et al. (eds) Software and Data Technologies: Second International Conference, 

ICSOFT/ENASE 2007, Barcelona, Spain, July 22-25, 2007, Revised Selected Papers. Berlin, 

Heidelberg, Springer Berlin Heidelberg, 387–398. doi: 10.1007/978-3-540-88655-6_29. 

Osis, J., Donins, U. (2010) Formalization of the UML Class Diagrams, In: Evaluation of Novel 

Approaches to Software Engineering. New York, Springer, Berlin, Heidelberg, 180–192. 

doi: 10.1007/978-3-642-14819-4_13. 

Osis, J., Donins, U. (2017) Topological UML modeling : an improved approach for domain 

modeling and software development. Elsevier. 

Osis, J., Slihte, A. (2010) Transforming Textual Use Cases to a Computation Independent Model, 

In: Osis, J,Nikiforova, O. (eds) Model-Driven Architecture and Modeling-Driven Software 

Development: ENASE 2010, 2ndMDA&MTDD Whs. SciTePress, 33–42. 

Pearl, J. (2019) The Seven Tools of Causal Inference, with Reflections on Machine Learning, 

Communications of Association for Computing Machinery, 62(3), 54–60. doi: 

10.1145/3241036. 

ReDSeeDS (2020) Model-Driven Requirements Engineering in action, ReDSeeDS | Requirements-

Driven Software Development System. Available at: http://smog.iem.pw.edu.pl/redseeds/ 



68  Nazaruka 

 

Rhazali, Y., Hadi, Y., Mouloudi, A. (2015) Disciplined approach for transformation CIM to PIM 

in MDA, In: Model-Driven Engineering and Software Development (MODELSWARD), 2015 

3rd International Conference on. IEEE, 312–320. 

Rhazali, Y., Hadi, Y., Mouloudi, A. (2016) CIM to PIM Transformation in MDA: from Service-

Oriented Business Models to Web-Based Design Models, In: International Journal of 

Software Engineering and Its Applications, 10(4), 125–142. 

doi: 10.14257/ijseia.2016.10.4.13. 

Schneider, G., Winters, J. P. (2001) Applying Use Cases: A practical Guide. 2nd edn. Pearson 

Education, Inc. 

Šlihte, A., Osis, J. (2014) The Integrated Domain Modeling: A Case Study, In: Databases and 

Information Systems: Proceedings of the 11th International Baltic Conference (DB&IS 

2014). Tallinn, Tallinn University of Technology Press, 465–470. 

Slihte, A., Osis, J., Donins, U. (2011) Knowledge Integration for Domain Modeling, In: Osis, J., 

Nikiforova, O. (eds) Model-Driven Architecture and Modeling-Driven Software 

Development: ENASE 2011, 3rd Whs. MDA&MDSD. SciTePress, 46–56. 

Solstad, T., Bott, O. (2017) Causality and causal reasoning in natural language, In: Waldmann, M. 

R. (ed.) The Oxford Handbook of Causal Reasoning. Oxford University Press. Available at: 

http://www.oxfordhandbooks.com/view/10.1093/oxfordhb/9780199399550.001.0001/oxford

hb-9780199399550-e-32. 

Waldmann, M. R, Hagmayer, Y. (2013) Causal reasoning, In: Reisberg, D. (ed.) Oxford Handbook 

of Cognitive Psychology. New York: Oxford University Press. doi: 

10.1093/oxfordhb/9780195376746.013.0046. 

 

Received August 22, 2019,  revised February 3, 2020,  accepted February 11, 2020 

 


