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Abstract. The first step in working with object augmentation in an augmented reality system is to 

identify the target object, so its pose in respect to the camera can be determined for precise and 

accurate augmented content generation over the target object.  

In modern augmented reality systems natural feature detection algorithms are widely used for 

detecting, identifying and tracking planar textured objects.  All-natural feature algorithms detect 

interest points or keypoints (detector) in an image (scene) and/or calculate descriptors for 

keypoints (extractor). Algorithms can include both parts, detection and extraction, and can have 

just one of them realized.  

There is a variety of algorithms available nowadays for developers to use. Starting from floating 

point descriptor-based ones as SIFT and SURF and a row of binary descriptor-based algorithms 

such as BRIEF, ORB, BRISK, FREAK, KAZE, A-KAZE, LATCH. In addition, there are 

algorithms which only detect interest points, as FAST or A-GAST. Furthermore, it is possible to 

use one algorithm for keypoint detection and afterwards use another for descriptor extraction. 

Given such a variety of available algorithms, it is necessary to analyse them by understanding their 

working principles, so they can be classified by their strengths and weaknesses and in what 

situations the use of one or another algorithm is more appropriate.  Since it is possible to use 

combinations of algorithms, a table of possible cases is provided. 

For clarity we must mention that various algorithms, which are not mentioned here, are available 

but we take an overview of the above listed as all of them are included in the OpenCV library and 

are widely used in the industry. 
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1. Introduction 

The latest AR solutions use close range solutions utilizing spatial mapping and depth 

cameras instead of a marker-based approach. A surrounding 3D model is constructed in 

real time, thereby allowing precise placement of virtual objects at distances from ~10 

centimetres to ~5 meters. This approach offers high precision, participant mobility and a 

high immersion level in typical living room or office conditions (indoor, close range). In 

the last two years successful devices like Microsoft HoloLens, Lenovo Phab2 and Asus 

ZenfoneAR were developed. Performance and real time space recognition with depth 

camera sensors offers possibilities for new and engaging scenarios. Unfortunately, such 
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devices are too expensive for the typical consumer and end user and we can not talk 

about involvement of large social groups. This is a disadvantage and partly a reason why 

Google suspended its Tango project and switched to CoreAR, which uses the standard 

camera of a smartphone (Kastrenakes, 2017). Marker and image-based AR solutions are 

still widely used in various areas. High quality cameras and fast processors can provide 

accurate image recognition and virtual object placement. More and more solutions in AR 

are offered by computer vision algorithms and we can still be participants in various 

scenarios, related to architecture, healthcare, logistics, manufacturing, education, 

marketing, entertainment and other areas. This paper is linked to the collaboration with 

industry (Ltd. Overly), where the goal was to develop improved image-based marker 

detection for their services. 

2. Importance of computer vision and marked based 

augmented reality 

As stated previously, nowadays computer vision is used in numerous fields and 

disciplines where benefit can be gained from object detection, classification, tracking, 

pose estimation etc. in images or video frames. 

In industry several software-development kits (SDK) are available for augmented 

reality solution developers. To well-known and widely used ones “Vuforia”, “Wikitude”, 

Apple “ARKit” and Google “ARCore” can be enlisted. In augmented reality it is 

important for the afore-mentioned SDK’s to provide application, image or video frame 

processing. Another crucial factor is user experience in conjunction with augmented 

content creation and display to user, as well as interactivity. Here 3D authoring tools, 

such as “Unity”, can help. All mentioned SDK’s are used as plugins in Unity, providing 

a powerful complete tool for augmented reality application creation. Still there are some 

limitations, issues and obstacles that stem from the SDK’s closed code. The main is the 

inability to make changes in SDK code for more specific individual solutions and 

blockage of device’s video camera to other applications while using a particular SDK. 

  There is another approach to use the computer vision open source library 

“OpenCV” for solving particular application issues related to computer vision. The 

library has C++ interfaces and is written in optimized C/C++ and thus is platform 

independent. It consists of more than 2500 optimized algorithms, which include a 

notable set of classic and state-of-the-art computer vision and machine learning 

algorithms that can be used to also detect and track objects in an image. As the 

“OpenCV” library is a BSD license product, it is easy to adopt and to modify the source 

code. (https://opencv.org/about.html) 

3. Analysis of natural feature computer vision algorithms 

Natural feature algorithms consist of two main steps, which are the interest point or 

keypoint detection and keypoint descriptor calculation. Keypoints are distinct points in 

object texture such as edges, corners, blobs etc., which can be easily located and stand 

out from rest of the image. Meanwhile a keypoint descriptor characterises it, so a 

keypoint can be located in an image and distinguished from other keypoints, and, more 
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Fig.1. SIFT keypoint descriptor computing from 8x8 set of samples around keypoint. 

(Lowe, 2004) 

importantly, matched to itself in a different image even if transformations like 

translation, scale changes and rotation are present.  

There are numerous natural feature algorithms available for use in modern computer 

vision applications. These algorithms each implement different approaches and methods 

for keypoint detection and keypoint descriptor calculation. Besides distinct approaches 

for keypoint detection we can divide natural feature algorithms into two main groups by 

the calculated descriptor type used: floating and binary type descriptors. 

One of the most powerful, including scale and rotation invariance and persistency to 

illumination changes, natural feature algorithm is Scale Invariant Feature Transform 

(SIFT), introduced in (Lowe, 2004). The SIFT algorithm contains four main steps where 

at first keypoints are identified in the image by searching for pixels that represent 

extrema of the Difference-of-Gaussian (DoG) scales-space. In the next step unreliable 

keypoints are removed, like keypoints with poorly determined location (along edges) or 

with low contrast. In the third step, orientation is assigned to each keypoint, therefore 

keypoint descriptors can be represented relative to a keypoint’s orientation, and thus a 

keypoint is invariant to image rotation. As showed in Fig.1, the keypoint descriptor is 

calculated by computing gradient magnitude and orientation at each image point in a 

region around the keypoint. These are weighted by a Gaussian window, indicated by the 

overlaid circle. These samples are then accumulated into orientation histograms 

summarizing the contents over 2x2 sub regions, as shown on the right, with the length of 

each arrow corresponding to the sum of the gradient magnitudes near that direction 

within the region (Lowe, 2004).        

As the SIFT algorithm is computation expensive Speeded Up Robust Features 

(SURF) algorithm was introduced in (Bay et al., 2006). SURF detection of keypoints 

uses the determinant of the Hessian matrix, while the descriptor calculation is done by 

summing Haar wavelet responses at the regions of interest (Bay et al., 2006). Despite the 

SURF algorithm being much faster than SIFT, it still is computation expensive and as 

keypoint descriptors are type of so called floating-point, the same as SIFT, which takes 

up much memory and lot of computation to compare and match them, these algorithms 

are not applicable for real time object tracking applications. 

Fig.2. Descriptor calculation pattern of (a)  BRIEF, (b)  ORB, (c) BRISK, (d) FREAK. 
(a) (b) (c) (d) 
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This is where binary descriptor-based natural feature algorithms are useful, as 

descriptor calculation is much less expensive and, due to its binary nature, they can be 

more effectively compared and matched. The speed comes at a price, and that is 

robustness and performance. 

 

One of the first natural feature algorithms using binary descriptors is Binary Robust 

Independent Elementary Features (BRIEF) introduced in (Calonder et al., 2010). This 

algorithm does not include a keypoint detection phase, so it can be coupled with any 

other keypoint detector. Descriptor calculation is based on intensity comparison of 

random pixel pairs in a patch centred around a keypoint (see Fig.2 (a).). The resulting 

comparison forms a binary string that can be compared to other descriptors and matched 

very quickly. Due to its simplicity, BRIEF is not scale and rotation invariant, and that 

limits its usage in augmented reality applications. 

To overcome the lack of BRIEF rotation invariance Oriented FAST and Rotated 

BRIEF (ORB) was introduced in (Rublee et al., 2011). This algorithm uses modified 

FAST (Rosten et al., 2010) corner detector for keypoint detection, where Harris corner 

measure is applied for each keypoint location, thus providing non-maximal suppression 

within the image. For detection of different size keypoints limited image scale pyramid 

is used. For keypoint descriptor calculation modified BRIEF is used, where local 

orientation is computed through the use of an intensity centroid, which is weighted 

averaging pixel intensities in the local patch which does not correspond to the centre of 

keypoint. As in BRIEF, descriptor calculation is based on intensity comparison on pixel 

pairs, and pair selection (see Fig.2 (b)) is constructed by machine learning, maximizing 

descriptor’s variance and minimizing the correlation under various orientation changes 

(Heinly et al., 2012). 

To introduce scale invariance Binary Robust Invariant Scalable (BRISK) algorithm 

was introduced in (Leutenegger et al., 2011). For keypoint location detection AGAST 

(Mair et al., 2010) corner detector is used. To add scale invariance, keypoints are 

detected in a scale-space pyramid, performing non-maxima suppression and 

interpolation across all scales (Heinly et al., 2012). As for BRIEF and ORB, keypoint 

descriptor is calculated based on brightness intensity comparison of pixel pairs. Distinct 

is principle how pixel pairs are selected. A concentric ring-based sampling pattern (see 

Fig. X (c)) is used to select pixel pairs. Close distance pairs are used for descriptor 

calculation, long distance pairs used to determine orientation. Due to its complexity 

compared to BRIEF and ORB, BRISK requires more computation power. 

Fast REtinA Keypoint (FREAK) was introduced in (Alahi et al., 2012). This 

algorithm lacks a feature detection step, so existing keypoint detectors can be used. The 

author of FREAK suggests using AGAST corner detector. As afore-mentioned binary 

algorithms, FREAK also computes descriptors based on brightness intensity between 

pixel pairs. The pixel sampling pattern (see Fig.2 (d)) is inspired by the human retina so 

that sampling points represent centres of receptive fields.   

Fig. 3. Visualization of LATCH descriptor calculation with three-pixel patches 

in region of keypoint. 
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Learned Arrangements of Three Patch Codes (LATCH) was introduced in (Levi et 

al., 2016). As BRIEF and FREAK, LATCH also does not have its own keypoint 

detection, so existing keypoint detectors have to be used. Instead of comparing pixel 

pairs, for descriptor calculation, LATCH compares triplets of patches in region of 

keypoint (see Fig.3). In each triple of patches one patch is marked as ‘anchor’, the other 

patches are marked as ‘companions’. Similarity between “anchor” and “companions” is 

calculated by the sum-of-squared differences (SSD). If the first “companion” is more 

similar to the “anchor” than the second, then “1” is written in the resulting bit, otherwise 

a “0” is entered.  

Accelerated KAZE (A-KAZE) algorithm was introduced in (Alcantarilla et al, 2013) 

to provide robust feature detection and descriptor extraction. For keypoint detection, A-

KAZE uses fast explicit diffusion schemes for building nonlinear scale space 

considering anisotropic diffusion. As for descriptor calculation, A-KAZE uses Modified-

Local Difference Binary (M-LDB) that uses gradient and intensity information from the 

nonlinear scale space.   

In Table 1. a summary of above listed natural feature algorithms is provided. 

  
Table 1. Summary of natural feature algorithm properties 

 

Algorithm 
FD, 

DE 
Descriptor type 

Rotation 

invariance 

Scale 

invariance 
Patented 

SIFT FD, 

DE 

Floating Yes Yes Yes 

SURF FD, 

DE 

Floating Yes Yes Yes 

BRIEF DE Binary No No No 

ORB FD, 

DE 

Binary Yes No No 

BRISK FD, 

DE 

Binary Yes Yes No 

FREAK DE Binary Yes Yes No 

A-KAZE FD, 

DE 

Binary Yes Yes No 

LATCH DE Binary Yes Yes No 

FD – feature detection 

DE – feature descriptor extraction (calculation) 

4. Suitable algorithm approbation in open source software 

library 

 The aim is to create a software module which is platform independent, performs object 

detection and tracking, does not block device’s video camera and is coded using 

“OpenCV” library so it is possible to modify the source code. 

The above-listed prerequisites require creation of a library written in C++, which 

provides platform independence and can be implemented in any 3D authoring tool. 

Device’s camera is controlled from a 3D authoring tool, so the camera is freely available  
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for the developer to do any other manipulations with its input, also frames from camera 

input can be passed to the module for processing at any time. 

 

 

The graphical interface of the 3D authoring tool and developed module interaction is 

shown in Fig. 4. The 3D authoring tool must provide initial settings for the tracking 

module and tracked object parameters, which can be in the form of a tracked object 

image or XML file with tracked object data, such as dimensions, keypoints and 

descriptors. For every frame where object detection and tracking is necessary, the input 

frame from a device’s video camera must be forwarded to the tracking module where 

object detection, tracking and pose estimation is performed. As a result, the tracking 

module returns its status to the 3D authoring tool, whether an object has been detected. If 

yes, object position in reference to the device’s camera is returned. Object position is 

formed in 6 Degrees of Freedom, which includes object translation in frame by x, y, z 

axis and objects rotation by x, y, z axis in reference to the video camera of the device. 

In the tracking module tracking will be separated in two cases, initial object detection 

and continuous object tracking (see Fig. 5).  

First is initial object detection, which is performed if an object has not been detected 

in previous frames. In this case a more precise and robust natural feature tracking 

algorithm is used to detect an object in a scene. After initial object detection, separate 

interest points are calculated, which are used in later frames for continuous object 

tracking using a modified iterative version of the Lucas-Kanade optical flow in pyramids 

(Bouguet, 2001). 

If object initial detection has been performed, then in continuous frames interest 

point motion in reference to the previous frame is tracked using a sparse optical flow 

algorithm. Next, the faster but not as precise natural feature algorithm is used to detect 

the tracking object in the input frame region tracked by the sparse optical flow 

algorithm, thus processing just part of the input frame and improving execution time. As 

in the first case, separate interest points are calculated for next frame optical flow 

tracking. 

3D visualization/authoring tool (Unity, WEB based, third party) 

 Augmented reality content generation and display 

 User experience realisation 

 Device’s video camera management 

Object detection and tracking module 

 Incoming video frame pre-processing 

 Object of interest detection and tracking 

 Tracked object orientation and position, in accordance with camera, 

detection and computation 

Settings 

Tracking object parameters 

Input video frame 

Status 

Tracked object position 

(6DoF) 

Fig. 4. Conceptual schematics of module and authoring tool interaction 



180  Cirulis et al. 

 

 

5. Conclusions 

The approach offered in this paper provides a functional software module for various AR 

implementations. This module is platform and hardware independent. It can run on 

Windows, Android and Apple computers. Compared to other solutions, this software 

does not block access to the video camera and it is accessible for other applications as 

well. To develop this marker recognition module, function separation is considered; it 

means that this module only takes responsibility for object detection and tracking. The 

module is open source and it uses only open source libraries. 

Future challenges include improvement of tracking stability and persistence, collision 

detection among many markers in image database, performance improvements on 

mobile devices, simultaneous tracking of several objects. 

 

 

Input frame pre-processing 

Keypoint detection and descriptor 

calculation with efficent and robust 

algorithm 

Calculated keypoint descriptor 
matching with tracked object 

descriptors 

Homography calculation for 

matched keypoints 

Tracked object pose estimation 

Keypoint calculation and selection, 

or update for optical flow tracking 

Keypoint tracking using optical 

flow algorithm 

Homography calculation for 
tracked keypoints and tracked 

object 

Tracked region in input frame 
warping to tracked object 

dimensions 

Keypoint detection and descriptor 
calculation with computationally 

efficient algorithm 

 

Return of result 

Initial 
object 

detection 

Yes No 

Fig. 5. Tracking module conceptual processing schematics. 
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