
Baltic J. Modern Computing, Vol. 8 (2020), No. 1, 174-181

https://doi.org/10.22364/bjmc.2020.8.1.10

Analysis of Suitable Natural Feature Computer

Vision Algorithms for Augmented Reality Services

Arnis CĪRULIS
1
, Kristaps BRIGMANIS-BRIĢIS

1
, Gatis ZVEJNIEKS

2

1Virtual and Augmented Reality Laboratory, Sociotechnical Systems Engineering Institute of the

Vidzeme University of Applied Sciences, Cēsu str. 4, Valmiera, Latvia, LV-4200
2SIA Overly, Kr. Valdemara str. 115-5, Riga, Latvia

arnis@va.lv, kristaps.brigmanis@va.lv, gatis@overly.lv

Abstract. The first step in working with object augmentation in an augmented reality system is to

identify the target object, so its pose in respect to the camera can be determined for precise and

accurate augmented content generation over the target object.

In modern augmented reality systems natural feature detection algorithms are widely used for

detecting, identifying and tracking planar textured objects. All-natural feature algorithms detect

interest points or keypoints (detector) in an image (scene) and/or calculate descriptors for

keypoints (extractor). Algorithms can include both parts, detection and extraction, and can have

just one of them realized.

There is a variety of algorithms available nowadays for developers to use. Starting from floating

point descriptor-based ones as SIFT and SURF and a row of binary descriptor-based algorithms

such as BRIEF, ORB, BRISK, FREAK, KAZE, A-KAZE, LATCH. In addition, there are

algorithms which only detect interest points, as FAST or A-GAST. Furthermore, it is possible to

use one algorithm for keypoint detection and afterwards use another for descriptor extraction.

Given such a variety of available algorithms, it is necessary to analyse them by understanding their

working principles, so they can be classified by their strengths and weaknesses and in what

situations the use of one or another algorithm is more appropriate. Since it is possible to use

combinations of algorithms, a table of possible cases is provided.

For clarity we must mention that various algorithms, which are not mentioned here, are available

but we take an overview of the above listed as all of them are included in the OpenCV library and

are widely used in the industry.

Keywords: Augmented Reality, Computer Vision, Natural Feature Detection Algorithms.

1. Introduction

The latest AR solutions use close range solutions utilizing spatial mapping and depth

cameras instead of a marker-based approach. A surrounding 3D model is constructed in

real time, thereby allowing precise placement of virtual objects at distances from ~10

centimetres to ~5 meters. This approach offers high precision, participant mobility and a

high immersion level in typical living room or office conditions (indoor, close range). In

the last two years successful devices like Microsoft HoloLens, Lenovo Phab2 and Asus

ZenfoneAR were developed. Performance and real time space recognition with depth

camera sensors offers possibilities for new and engaging scenarios. Unfortunately, such

https://doi.org/10.22364/bjmc.2020.8.1.10
mailto:arnis@va.lv

 Analysis of Suitable Natural Feature Computer Vision Algorithms 175

devices are too expensive for the typical consumer and end user and we can not talk

about involvement of large social groups. This is a disadvantage and partly a reason why

Google suspended its Tango project and switched to CoreAR, which uses the standard

camera of a smartphone (Kastrenakes, 2017). Marker and image-based AR solutions are

still widely used in various areas. High quality cameras and fast processors can provide

accurate image recognition and virtual object placement. More and more solutions in AR

are offered by computer vision algorithms and we can still be participants in various

scenarios, related to architecture, healthcare, logistics, manufacturing, education,

marketing, entertainment and other areas. This paper is linked to the collaboration with

industry (Ltd. Overly), where the goal was to develop improved image-based marker

detection for their services.

2. Importance of computer vision and marked based

augmented reality

As stated previously, nowadays computer vision is used in numerous fields and

disciplines where benefit can be gained from object detection, classification, tracking,

pose estimation etc. in images or video frames.

In industry several software-development kits (SDK) are available for augmented

reality solution developers. To well-known and widely used ones “Vuforia”, “Wikitude”,

Apple “ARKit” and Google “ARCore” can be enlisted. In augmented reality it is

important for the afore-mentioned SDK’s to provide application, image or video frame

processing. Another crucial factor is user experience in conjunction with augmented

content creation and display to user, as well as interactivity. Here 3D authoring tools,

such as “Unity”, can help. All mentioned SDK’s are used as plugins in Unity, providing

a powerful complete tool for augmented reality application creation. Still there are some

limitations, issues and obstacles that stem from the SDK’s closed code. The main is the

inability to make changes in SDK code for more specific individual solutions and

blockage of device’s video camera to other applications while using a particular SDK.

 There is another approach to use the computer vision open source library

“OpenCV” for solving particular application issues related to computer vision. The

library has C++ interfaces and is written in optimized C/C++ and thus is platform

independent. It consists of more than 2500 optimized algorithms, which include a

notable set of classic and state-of-the-art computer vision and machine learning

algorithms that can be used to also detect and track objects in an image. As the

“OpenCV” library is a BSD license product, it is easy to adopt and to modify the source

code. (https://opencv.org/about.html)

3. Analysis of natural feature computer vision algorithms

Natural feature algorithms consist of two main steps, which are the interest point or

keypoint detection and keypoint descriptor calculation. Keypoints are distinct points in

object texture such as edges, corners, blobs etc., which can be easily located and stand

out from rest of the image. Meanwhile a keypoint descriptor characterises it, so a

keypoint can be located in an image and distinguished from other keypoints, and, more

176 Cirulis et al.

Fig.1. SIFT keypoint descriptor computing from 8x8 set of samples around keypoint.

(Lowe, 2004)

importantly, matched to itself in a different image even if transformations like

translation, scale changes and rotation are present.

There are numerous natural feature algorithms available for use in modern computer

vision applications. These algorithms each implement different approaches and methods

for keypoint detection and keypoint descriptor calculation. Besides distinct approaches

for keypoint detection we can divide natural feature algorithms into two main groups by

the calculated descriptor type used: floating and binary type descriptors.

One of the most powerful, including scale and rotation invariance and persistency to

illumination changes, natural feature algorithm is Scale Invariant Feature Transform

(SIFT), introduced in (Lowe, 2004). The SIFT algorithm contains four main steps where

at first keypoints are identified in the image by searching for pixels that represent

extrema of the Difference-of-Gaussian (DoG) scales-space. In the next step unreliable

keypoints are removed, like keypoints with poorly determined location (along edges) or

with low contrast. In the third step, orientation is assigned to each keypoint, therefore

keypoint descriptors can be represented relative to a keypoint’s orientation, and thus a

keypoint is invariant to image rotation. As showed in Fig.1, the keypoint descriptor is

calculated by computing gradient magnitude and orientation at each image point in a

region around the keypoint. These are weighted by a Gaussian window, indicated by the

overlaid circle. These samples are then accumulated into orientation histograms

summarizing the contents over 2x2 sub regions, as shown on the right, with the length of

each arrow corresponding to the sum of the gradient magnitudes near that direction

within the region (Lowe, 2004).

As the SIFT algorithm is computation expensive Speeded Up Robust Features

(SURF) algorithm was introduced in (Bay et al., 2006). SURF detection of keypoints

uses the determinant of the Hessian matrix, while the descriptor calculation is done by

summing Haar wavelet responses at the regions of interest (Bay et al., 2006). Despite the

SURF algorithm being much faster than SIFT, it still is computation expensive and as

keypoint descriptors are type of so called floating-point, the same as SIFT, which takes

up much memory and lot of computation to compare and match them, these algorithms

are not applicable for real time object tracking applications.

Fig.2. Descriptor calculation pattern of (a) BRIEF, (b) ORB, (c) BRISK, (d) FREAK.
(a) (b) (c) (d)

 Analysis of Suitable Natural Feature Computer Vision Algorithms 177

This is where binary descriptor-based natural feature algorithms are useful, as

descriptor calculation is much less expensive and, due to its binary nature, they can be

more effectively compared and matched. The speed comes at a price, and that is

robustness and performance.

One of the first natural feature algorithms using binary descriptors is Binary Robust

Independent Elementary Features (BRIEF) introduced in (Calonder et al., 2010). This

algorithm does not include a keypoint detection phase, so it can be coupled with any

other keypoint detector. Descriptor calculation is based on intensity comparison of

random pixel pairs in a patch centred around a keypoint (see Fig.2 (a).). The resulting

comparison forms a binary string that can be compared to other descriptors and matched

very quickly. Due to its simplicity, BRIEF is not scale and rotation invariant, and that

limits its usage in augmented reality applications.

To overcome the lack of BRIEF rotation invariance Oriented FAST and Rotated

BRIEF (ORB) was introduced in (Rublee et al., 2011). This algorithm uses modified

FAST (Rosten et al., 2010) corner detector for keypoint detection, where Harris corner

measure is applied for each keypoint location, thus providing non-maximal suppression

within the image. For detection of different size keypoints limited image scale pyramid

is used. For keypoint descriptor calculation modified BRIEF is used, where local

orientation is computed through the use of an intensity centroid, which is weighted

averaging pixel intensities in the local patch which does not correspond to the centre of

keypoint. As in BRIEF, descriptor calculation is based on intensity comparison on pixel

pairs, and pair selection (see Fig.2 (b)) is constructed by machine learning, maximizing

descriptor’s variance and minimizing the correlation under various orientation changes

(Heinly et al., 2012).

To introduce scale invariance Binary Robust Invariant Scalable (BRISK) algorithm

was introduced in (Leutenegger et al., 2011). For keypoint location detection AGAST

(Mair et al., 2010) corner detector is used. To add scale invariance, keypoints are

detected in a scale-space pyramid, performing non-maxima suppression and

interpolation across all scales (Heinly et al., 2012). As for BRIEF and ORB, keypoint

descriptor is calculated based on brightness intensity comparison of pixel pairs. Distinct

is principle how pixel pairs are selected. A concentric ring-based sampling pattern (see

Fig. X (c)) is used to select pixel pairs. Close distance pairs are used for descriptor

calculation, long distance pairs used to determine orientation. Due to its complexity

compared to BRIEF and ORB, BRISK requires more computation power.

Fast REtinA Keypoint (FREAK) was introduced in (Alahi et al., 2012). This

algorithm lacks a feature detection step, so existing keypoint detectors can be used. The

author of FREAK suggests using AGAST corner detector. As afore-mentioned binary

algorithms, FREAK also computes descriptors based on brightness intensity between

pixel pairs. The pixel sampling pattern (see Fig.2 (d)) is inspired by the human retina so

that sampling points represent centres of receptive fields.

Fig. 3. Visualization of LATCH descriptor calculation with three-pixel patches

in region of keypoint.

178 Cirulis et al.

Learned Arrangements of Three Patch Codes (LATCH) was introduced in (Levi et

al., 2016). As BRIEF and FREAK, LATCH also does not have its own keypoint

detection, so existing keypoint detectors have to be used. Instead of comparing pixel

pairs, for descriptor calculation, LATCH compares triplets of patches in region of

keypoint (see Fig.3). In each triple of patches one patch is marked as ‘anchor’, the other

patches are marked as ‘companions’. Similarity between “anchor” and “companions” is

calculated by the sum-of-squared differences (SSD). If the first “companion” is more

similar to the “anchor” than the second, then “1” is written in the resulting bit, otherwise

a “0” is entered.

Accelerated KAZE (A-KAZE) algorithm was introduced in (Alcantarilla et al, 2013)

to provide robust feature detection and descriptor extraction. For keypoint detection, A-

KAZE uses fast explicit diffusion schemes for building nonlinear scale space

considering anisotropic diffusion. As for descriptor calculation, A-KAZE uses Modified-

Local Difference Binary (M-LDB) that uses gradient and intensity information from the

nonlinear scale space.

In Table 1. a summary of above listed natural feature algorithms is provided.

Table 1. Summary of natural feature algorithm properties

Algorithm
FD,

DE
Descriptor type

Rotation

invariance

Scale

invariance
Patented

SIFT FD,

DE

Floating Yes Yes Yes

SURF FD,

DE

Floating Yes Yes Yes

BRIEF DE Binary No No No

ORB FD,

DE

Binary Yes No No

BRISK FD,

DE

Binary Yes Yes No

FREAK DE Binary Yes Yes No

A-KAZE FD,

DE

Binary Yes Yes No

LATCH DE Binary Yes Yes No

FD – feature detection

DE – feature descriptor extraction (calculation)

4. Suitable algorithm approbation in open source software

library

 The aim is to create a software module which is platform independent, performs object

detection and tracking, does not block device’s video camera and is coded using

“OpenCV” library so it is possible to modify the source code.

The above-listed prerequisites require creation of a library written in C++, which

provides platform independence and can be implemented in any 3D authoring tool.

Device’s camera is controlled from a 3D authoring tool, so the camera is freely available

 Analysis of Suitable Natural Feature Computer Vision Algorithms 179

for the developer to do any other manipulations with its input, also frames from camera

input can be passed to the module for processing at any time.

The graphical interface of the 3D authoring tool and developed module interaction is

shown in Fig. 4. The 3D authoring tool must provide initial settings for the tracking

module and tracked object parameters, which can be in the form of a tracked object

image or XML file with tracked object data, such as dimensions, keypoints and

descriptors. For every frame where object detection and tracking is necessary, the input

frame from a device’s video camera must be forwarded to the tracking module where

object detection, tracking and pose estimation is performed. As a result, the tracking

module returns its status to the 3D authoring tool, whether an object has been detected. If

yes, object position in reference to the device’s camera is returned. Object position is

formed in 6 Degrees of Freedom, which includes object translation in frame by x, y, z

axis and objects rotation by x, y, z axis in reference to the video camera of the device.

In the tracking module tracking will be separated in two cases, initial object detection

and continuous object tracking (see Fig. 5).

First is initial object detection, which is performed if an object has not been detected

in previous frames. In this case a more precise and robust natural feature tracking

algorithm is used to detect an object in a scene. After initial object detection, separate

interest points are calculated, which are used in later frames for continuous object

tracking using a modified iterative version of the Lucas-Kanade optical flow in pyramids

(Bouguet, 2001).

If object initial detection has been performed, then in continuous frames interest

point motion in reference to the previous frame is tracked using a sparse optical flow

algorithm. Next, the faster but not as precise natural feature algorithm is used to detect

the tracking object in the input frame region tracked by the sparse optical flow

algorithm, thus processing just part of the input frame and improving execution time. As

in the first case, separate interest points are calculated for next frame optical flow

tracking.

3D visualization/authoring tool (Unity, WEB based, third party)

 Augmented reality content generation and display

 User experience realisation

 Device’s video camera management

Object detection and tracking module

 Incoming video frame pre-processing

 Object of interest detection and tracking

 Tracked object orientation and position, in accordance with camera,

detection and computation

Settings

Tracking object parameters

Input video frame

Status

Tracked object position

(6DoF)

Fig. 4. Conceptual schematics of module and authoring tool interaction

180 Cirulis et al.

5. Conclusions

The approach offered in this paper provides a functional software module for various AR

implementations. This module is platform and hardware independent. It can run on

Windows, Android and Apple computers. Compared to other solutions, this software

does not block access to the video camera and it is accessible for other applications as

well. To develop this marker recognition module, function separation is considered; it

means that this module only takes responsibility for object detection and tracking. The

module is open source and it uses only open source libraries.

Future challenges include improvement of tracking stability and persistence, collision

detection among many markers in image database, performance improvements on

mobile devices, simultaneous tracking of several objects.

Input frame pre-processing

Keypoint detection and descriptor

calculation with efficent and robust

algorithm

Calculated keypoint descriptor
matching with tracked object

descriptors

Homography calculation for

matched keypoints

Tracked object pose estimation

Keypoint calculation and selection,

or update for optical flow tracking

Keypoint tracking using optical

flow algorithm

Homography calculation for
tracked keypoints and tracked

object

Tracked region in input frame
warping to tracked object

dimensions

Keypoint detection and descriptor
calculation with computationally

efficient algorithm

Return of result

Initial
object

detection

Yes No

Fig. 5. Tracking module conceptual processing schematics.

 Analysis of Suitable Natural Feature Computer Vision Algorithms 181

References

Alahi, A., Ortiz, R., Vandergheynst, P. (2012).Freak: Fast retina keypoint. In Proc. IEEE.Conf.

Comput. Vision Pattern Recognition, pp. 510–517.

Alcantarilla, P. F., Nuevo, J., Bartoli, A. (2013). Fast Explicit Diffusion for Accelerated Features

in Nonlinear Scale Spaces, Bristol, UK.

Bay, H., Tuytelaars, T., Van Gool, L. (2006). “SURF: Speeded up robust features,” in Proceedings

of the European Conference on Computer Vision, pp. 404–417..

Bouguet, J. Y. (2001). “Pyramidal implementation of the affine lucas kanade feature tracker

description of the algorithm”, Intel Corporation, Vol. 1, no. 2, pp. 1-9.

Calonder, M., Lepetit, V., Strecha, C., Fua, P. (2010). Brief: Binary robust independent elementary

features. In European Conf. Comput. Vision, pp. 778–792. Springer.

Heinly, J., Dunn, E., Frahm, J.M. (2012). Comparative evaluation of binary features. In:

Proceedings of the European Conference on Computer Vision, Springer, pp. 759–773.

Kastrenakes, J. (2017). Google’s Project Tango is shutting down because ARCore is already here,

Available at: https://www.theverge.com/2017/12/15/16782556/project-tango-google-shutting-

down-arcore-augmented-reality

Leutenegger, S., Chli, M., Siegwart, R. Y. (2011). Brisk: Binary robust invariant scalable

keypoints. In Proc. IEEE Int. Conf. Comput. Vision, pp. 2548–2555.

Levi, G., Hassner, T. (2016). LATCH: Learned Arrangements of Three Patch Codes, IEEE Winter

Conference on Applications of Computer Vision (WACV).

Lowe, D. G. (2004). “Distinctive Image Features from Scale-Invariant Keypoints” IJCV, vol. 60,

no. 2, pp. 91–110.

Mair, E., Hager, G. D., Burschka, D., Suppa, M., Hirzinger, G. (2010). Adaptive and generic

corner detection based on the accelerated segment test, Proceedings of the 11th European

conference on Computer vision: Part II.

Rosten, E., Porter, R., Drummond, T. (2010)."Faster and better: A machine learning approach to

corner detection," IEEE Trans. Pattern Anal. Mach. Intell, vol. 32, no. 1, pp. 105-119.

Rublee, E., Rabaud, V., Konolige, K., Bradski. G. (2011). Orb: an efficient alternative to sift or

surf. In Proc. IEEE Int. Conf. Comput. Vision, pp. 2564–2571.

Received February 28, 2020, accepted March 17, 2020

