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Abstract. The problem of representing logical implications and proofs by mathematical objects
is considered. The need to develop a theory for measuring value and complexity of mathematical
implications and proofs is discussed including motivations, benefits and implementation prob-
lems. Examples of mathematical considerations are given. Arguments supporting such an advance
and its applications in mathematical research guidance and publication standards are given.
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1 Introduction

1.1 The aim of the article

The main aim of this article is to point out the need and possibilities to interpret and
encode logical implications (inferences, consequences) and proofs as mathematical ob-
jects focusing on complexity and paying less attention to semantic specifics and syn-
tactic issues. This means finding the simplest mathematical structure faithfully repre-
senting mathematical proofs and theories, creativity and development. Motivations and
possible benefits of this idea are discussed in a programmatic style. It must lead to im-
portant advances such as proof complexity measures. It must have important applica-
tions in research guidance, evaluation of mathematical results, these applications seem
to be important in their own right. Arguments which show that the proposed program
will have new features compared to classical logics and computational logic (automated
theorem proving) are mentioned. There are no theorems in this article, most issues are
discussed with a certain vagueness. This article is not intended to contribute to liter-
ature related to an established problem. The closest established or known problem is
the Hilbert’s24th problem. Some computer-theoretic aspects are discussed. The article
is oriented mainly towards readers interested in advancing mathematical and computa-
tional logic.
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1.2 History and the current state

Usefulness and the exceptional role of mathematics have been best expressed by the
hypothetical Pythagorean saying ”all is number”. It metaphorically asserts that all phys-
ical objects, systems and processes may be precisely mathematically modelled. Using a
philosophical point of view and language mathematics can be thought of as a universal
epistemological framework created by human intellect to justify knowledge or to per-
form justification/regress steps, see (Pollock, 1975), for knowledge from various areas
in a uniform way. An example of intra-mathematical regress step is the category theory
- mapping various mathematical theories to the graph theory with additional structures.

Mathematical activities have been mostly related to knowledge justification steps
which are called applied mathematics - mathematical modelling for other sciences
and processing of numerical, geometrical and physical data. In this paper, the term
‘model’ means “mathematical model” (as opposed to “mathematical logic model”). The
progress of both pure and applied mathematics has been greatly influenced by advances
in formalization and coordinatization of mathematical objects and the mathematical
language. Apart from many encoding breakthroughs various semantic and syntactic
problems of mathematical statements have been considered and solved.

In most areas of mathematics progress crucially depends on computing resources.
Computers are constantly being used by mathematicians also to check and verify theo-
rems, to make computations termed “automated theorem proving“ and ”mechanical the-
orem proving” which are equivalent to statement proving in certain areas of mathemat-
ics, see (Robinson and Voronkov, 2001) and (Chou et al., 1994). Proposals for computer-
based mathematical knowledge management systems such as “QED manifesto”, see
(Wiedijk, 2007), have been made. See (Avigad et al., 2014) for a recent review of com-
puterized theorem checking/proving.

One can notice a major longterm trend in mathematics and its applications. The ap-
plication areas having precise mathematical models and being served by applied mathe-
matics are constantly enlarging and models are getting more precise and rigorous. Even
the most “unmathematical” notions and processes, for example, related to conscious-
ness, cognition and psychological activities, may be subject to mathematical modelling
(in particular, due to the emergence of mathematical models of cognitive processes and
nervous systems) - justification/regress steps in the philosophical sense. We call this
trendthe Pythagorean process.

1.3 Possible nexts steps

One can ask whether the Pythagorean process will continue and what may be its next
steps. One feature that is still missing in mathematical culture is modelling and rep-
resentation of creative mathematical thinking going beyond its semantic and syntactic
content - a precise expression of all mathematical implications and proofs as well de-
fined mathematical objects. In this paper we use the term “implication” to denote also
“inference” and “consequence”. Going beyond semantics and syntactic content means
the development of implicational propositional calculus - mapping implications to sim-
pler mathematical objects. Another missing feature is a mathematical structure of math-
ematical theories - collections of related mathematical results and proof techniques.
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We conjecture that there will be advances of mathematics and its encoding which
will allow us to go beyond semantics and syntax of mathematical texts - to comprehen-
sively coordinatize (map into mathematical objects) and precisely interpret proofs and
mathematical theories as mathematical objects, known or new ones. Given a mathemat-
ical theoryT (a structure containing objects of study, first-order or higher-order logic
statements, proofs etc.) we may look for a mathematical objectρ(T ) which would be a
good model/representation ofT : elements ofT such as logical implications, proofs and
subsets of mathematical statements inT would be defined as substructures or quotient
structures ofρ(T ). Additionally, we are interested in interpreting specific (extremal in a
suitable sense) elements of ofρ(T ) as important statements inT . Such problems for any
established mathematical domain may be hard problems in pure mathematics, problems
like this do not seem to have been posed before. Implications and proofs could be also
considered as geometrical objects being embedded in some suitable ambient space. It
may be called representation theory of logic, the meaning of representation here is dif-
ferent from that of the group representation theory. The transfer fromT to ρ(T ) should
be thought philosophically as a regress step.

The proposed idea goes beyond the standard algebraic logic and the proof theory
which deals with constructions of systems of axioms, correct statements, syntactic and
language problems, expressive power problems of axiom and inference systems. The
proposed research program also goes beyond programs such as the Hilbert’s program
and the recent “QED manifesto” program because of its focus on implications and mod-
els of theories. Our idea can be metaphorically compared to introducing Cartesian co-
ordinates - assigning implications directions and lengths whereas the standard classical
logic is interested mainly in premises and conclusions. For the same reason, it goes
beyond computational mathematical logic (e.g.Coq , see (Gonthier, 2008),Isabelle,
see (Paulson, 1989) and other automated theorem proving systems) dealing with com-
puterized proving or disproving statements in a given formal language and checking
human proofs. These systems may contain ”dependency graph” features which exhibit
implication dependency between statements. Programs for creation of computerized
data systems of mathematical knowledge do not focus on implications. Our proposed
program may have links to proof complexity theory, e.g. proof size measuring.

Such models would allow to increase the speed and improve the quality of progress
of mathematical theories, improve understanding of various theories, introduce canon-
ical forms of arguments and theories, measure and quantify mathematical results such
as theorems and lemmas. They would compare and rank different theories and improve
understanding of their relations, classify mathematical theories ’up to isomorphism’,
consider maps between mathematical theories, find or construct extremal (e.g. minimal)
theories. It would also be used to guide researchers, show them the most important re-
search directions, problems and milestones in a rigorous and quantitative way. Problems
and proofs which are considered ”nice” or ”aesthetically pleasing” have mathematically
well defined extremal properties in terms of suitable coordinatization models. Both the-
ory building and problem posing/solving have to be formalized. Mathematical creativ-
ity, the progress of mathematics and the goal of mathematics itself have to be defined as
mathematical objects. Such an advance of the Pythagorean process may generate new
encodings and metalanguages for mathematical statements and proofs. It would enable
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mathematicians to counteract the specialization drive and process bigger amounts of
information. This research proposal appears to be related to the lesser-known unpub-
lished24th Hilbert’s problem - find the simplest proof of a given statement, compare
different proofs, design criteria for simplicity and rigour etc., see (Thiele, 2003). Find-
ing mathematical models of proofs should be considered the main unsolved problem in
mathematics nowadays containing the Hilbert’s24th problem as a subproblem.

These models may provide one more abstraction step - allow to make logical im-
plications without focusing on the semantic content of premises and conclusions. From
the computational point of view, it may allow substituting logical implication making
by computations.

Recursive usage of implications in defining objects representing implications must
be properly handled.

Its successes in pure mathematics may be transferred to other sciences through ap-
plied mathematics. Complexity and usefulness of different sciences and their branches
should be rigorously analyzed and uniformly compared.

If future generations will be interested in further mathematical research (especially
in pure mathematics) then computers or their future descendants will be eventually used
to perform it. Therefore we need to create theories which would interpret and model
human mathematical thinking using mathematical objects which can be processed by
computers, free mathematical research from human semantics, reduce mathematical
goal setting and creative theorem proving to computation, define the goal of mathemat-
ics as a computational result. The step of passing from computations to proofs and algo-
rithms should be iterated producing new paradigms of proofs and algorithms. It may be
impossible to change human thinking but it may be realistic to organize and emulate a
mathematical research process which would be performed by computers. Additionally,
immense future computational and information storage resources will allow to create
and maintain a ”logical implication service”.

Results of implication coordinatization and modelling will advance our understand-
ing of implication making and thinking itself to new levels, question the role and the
very need for implication making, offer possible improvements. It may identify limita-
tions, weaknesses and peculiarities of human thinking. If this approach is successful we
may ask fundamental questions. What can be considered an advanced or future form of
mathematical or general implication/consequence making? If there is such a form how
it can be implemented?

Although it is not within the scope of this paper it can be mentioned that possible
results in the proposed direction may be combined with expected advances in biology.
Such advences may be related to detailed description and understanding of the organi-
zation of the brain functioning starting with the subcellular level. Logical implications
must be analyzed as processes and states of brain tissues.

There may already exist scattered examples which are known to experts and the
Pythagorean process is proceeding in the proposed direction spontaneously. Never-
theless, relevant activities, results and examples should be integrated into a single pro-
gram. Regardless of their results the proposed research projects may generate nontrivial
mathematical results, new mathematical structures, higher levels of abstraction, new en-
codings and standards for mathematical language.
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1.4 Applications

A mathematically sound method for measuring value or complexity of mathematical
results would also allow setting rigorous standards for research publications in pro-
fessionally accepted journals and other information depositories. A rigorous evalua-
tion method based on mathematical analysis of results and techniques must be found.
A mathematically justified content evaluation method would allow to establish really
valuable mathematical results, proof methods and research directions, to measure and
classify creativity of research results. In section 2.4 we give descriptions of these and
other possible applications.

2 Main research and application directions

2.1 Coordinatization of implications and proofs using predicate supports

Proofs of mathematical statements are sequences or, more generally, networks of logical
implications. One approach to the study of proofs would be to study relatively simple
logical implications and their networks. Research may be needed to determine right
definitions of irreducible implications, various types of implications and their linkings,
embeddings of the objects corresponding to implications in suitable ambient spaces - a
geometrization of logic.

Logical implications can be defined as instances of a relation on logical predicates
in first-order or higher-order logic using the material condition connective⇒. Con-
sequence relatioǹ used in mathematical logic is also a relevant notion. Given two
predicatesP (x) andQ(x) defined for allx ∈ X we say thatP impliesQ (P → Q) if

∧

x∈X

(
P (x) ⇒ Q(x)

)
= true.

The supportsupp(A) of a predicateA may be defined as the set ofA argument values
x for which A(x) = true. Validity of a predicate implicationP → Q is equivalent to
the set-theoretic inclusion of the support ofP (x) into the support ofQ(x): P → Q is a
true statement if and only ifsupp(P ) ⊆ supp(Q).

We could try to coordinatise the implicationP → Q by set-theoretical, combina-
torial, algebro-geometrical, geometrical, topological and complexity-theoretical prop-
erties of the setssupp(P ) and supp(Q) such as 1) absolute and relative sizes and
shapes ofsupp(P ), supp(Q) andsupp(Q)\supp(P ), 2) properties of the boundaries
of supp(P ) andsupp(Q). We conjecture that 1) the implicationP → Q can be con-
sidered easy ifsupp(P ) is a relatively small, e.g. low-dimensional, subset ofsupp(Q);
2) implicationsP → Q1 andP → Q2 can be considered distinct if(supp(Q1) ∩
supp(Q2))\supp(P ) is small.

Proofs as sequences of implicationsP1 → P2 → ... → Pn may be considered as
sequences of set-theoretic inclusionssupp(P1) ⊆ supp(P2) ⊆ ... ⊆ supp(Pn). Pass-
ing from semantic-specific implication making to constructing sequences of embedded
sets should be considered as a computational substitution of implication making.
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Coordinatization and modelling of logical implications may also be related or even
reduced to computational complexity if computations are involved in determining the
inclusionsupp(P ) ⊆ supp(Q).

Additional idea is to generalize implications, to define other binary relations in
statement sets. Given predicatesP (x) un Q(x) we can consider another properties of
supp(P ) and supp(Q) (instead of inclusion) for this purpose. For example, we can
define thatP almost impliesQ if supp(P )\supp(Q) is small or simple in a suitable
sense.

Irreducible implications in propositional logicWe give a candidate definition for irre-
ducible implications in the case of propositional logic (predicates depending on binary
vectors). In this caseX can be thought asZn

2 , n - the number of variables. Implica-
tions between formulas correspond to inclusions ofZn

2 -subsets. Supposep(X1, ..., Xn)
andq(X1, ..., Xn) are formulas in propositional Boolean variablesX1, ..., Xn and the
implicationp → q is true. We call an implicationp(X1, ..., Xn) → q(X1, ..., Xn) ir-
reducible if the full disjunctive normal form (FDNF) ofq has exactly one more full
disjunctive term than the FDNF ofp. In this case the implicationp → q is not a com-
position of two noninvertible implications.

Complexity of implications in propositional logicComplexity of formulas in propo-
sitional Boolean variables can be measured in terms of their minimal disjunctive or
conjunctive forms, the structure of prime implicants, Blake canonical forms, logical
depth and other circuit complexity measures, see (Brown, 1990). The complexity of an
implication p(X1, ..., Xn) → q(X1, ..., Xn) can be measured in terms of changes of
disjunctive (conjunctive, minimal, Blake etc.) normal forms ofp andq.

2.2 Modelling implication relations using discrete mathematics, algebra and
topology

In this section, we consider a few possible directions for advancing Hilbert’s “logical
arithmetic”.

2.2.1 Category-theoretic approachesDefine a categoryMath where objects are
mathematical statements and morphisms are logical implications (consequences), com-
position of morphisms may be the standard composition of implications.

We can studyMath or its subcategories with respect to problems such as concretiza-
tions, functors to and from other categories, interpretations of category-theoretic con-
structions such as natural transformations, adjoint functors, pushouts and pullbacks,
limits, initial and terminal objects, quotients etc.

2.2.2 Graph-theoretic approachesA mathematical theory (its subtheory or quotient
theory) can be interpreted as a directed Activity-On-Arc type graph corresponding to
the implication relation. We consider theproof graphΠ = (Σ,Λ), where elements ofΣ
are statements (which are not interpreted as implications) and directed edges in the set
Λ are relatively simple, irreducible logical implications.
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Graphs are widely used in mathematical logic, see (Quispe-Cruz, 2014) for a recent
work. Among other approaches, propositional formulas can be interpreted as graphs
called cographs. Recently there has been an attempt to encode mathematical logic with-
out syntax using graphs - to define and studycombinatorial proofsin propositional logic
as graph homomorphisms of a certain kind, see (Hughes, 2006).

Metric properties of proof graphsAssume that any edge of a proof graphΠ is given
a weight which measures the complexity or some other well-defined property of the
corresponding implication. In the simplest naive cases, weights could be positive num-
bers. Assume that we are given a directed path between two verticesP andQ having
edgese1, e2, ..., en with weightsw1, w2, ..., wn which corresponds to a proofP → Q.
Complexity or other measure of the proof could be defined as an appropriate function
of weightsw1, w2, ..., wn, for example,

∑
i wi. Having a proof graph invariant which

would correspond to proof weight or metric we could investigate problems such as,
for example, the problem of finding all statements within a fixed distance from a given
statement or axiom, or, the problem of finding distance between the premise and the
conclusion. Analogues of various metric-based subgraphs such as nearest neighbour
graphs can be studied. Vertices having extremal eccentricity values should be studied.

Vertices with special/extremal properties as valuable or low value statementsProof
graph models and other proof coordinatization ideas should rigorously identify extremal
statements and extremal implication steps which are relatively more or less important
than others. In particular, vertices of proof graphs having extremal properties related
to connectivity, metric, centrality or other invariants may be considered as valuable
”theorems”. The same arguments should identify statements which can be considered
of low value.

Path systemsDifferent paths in a proof graph between verticesP and Q represent
different proofs between the corresponding statements. Having fixed verticesP andQ
we can study all(P, Q)-paths, e.g. we can pose the problem of finding all(P, Q)-proofs.
We can also try to find vertices with special properties, e.g. vertices which are in more
than one(P,Q)-path.

In topological models for proof spaces topological ideas such as homotopy classes
of path systems and homology-type invariants should be considered.

Shortest pathsGiven two statementsP and Q in a proof graph we could look for
(P, Q)-paths with some special or extremal properties such as the paths having minimal
weight. That would correspond to finding(P, Q)-proofs with some special properties,
for example, proofs of minimal total or stepwise complexity. These ideas again remind
us of the Hilbert’s24th problem and the “simplest proof”.

Motifs and forbidden structuresWe can study typical subgraphs (motifs), forbidden
subgraphs and minors of proof graphs.
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2.2.3 Algebraic approachesVarious algebraic approaches to mathematical logic are
currently being pursued, see for example (Font and Jansana, 1996). The composition of
implications can be interpreted as a partially defined binary associative operation on
the set of implications. The implication setΛ thus has a monoid structure, algebraic
questions may be asked and algebraic methods may be used to studyΛ.

Another algebraic approach is to study ring homomorphisms of coordinate rings of
algebraic varieties. Inclusion of predicate support sets, see 2.1, may be interpreted as
morphisms of algebraic varieties which by duality induce morphisms of their coordinate
rings going in the opposite direction.

2.2.4 Algebro-geometric approachesThe well-known coordinate method used for
solving problems in Euclidean geometry, algebraic geometry used in the mechaniza-
tion of problem-solving, see (Chou et al., 1994), can be thought as precursors of more
advanced theories to come.

2.2.5 A topological approachA mathematical theory(Σ, Λ) can also be endowed a
topological space structure as follows. The implication binary relation→ is a preorder
relation - it is obviously reflexive and transitive. We can view the implication relation
as a specialization preorder for the Alexandrov topologyτ on Σ corresponding to←:
the open sets forτ are the upper sets with respect to the relation←. We remind the
reader that a setU is an upper set with respect to← if the conjunction ofQ ∈ U and
P → Q impliesP ∈ U , see (Barmak, 2011). We can investigate the given mathematical
theory(Σ, Λ) using topological experience and intuition - study the topologyτ with
respect to standard problems of general and algebraic topology such as interpretations
of continuity, separability, metrizability, homotopy or (co)homology invariants. Certain
properties of proofs which vaguely are linked with continuity should be defined.

2.2.6 Proof bundles If we have predicatesP (x), Q(x) wherex ∈ X and an impli-
cation or prooff : P → Q for which P (x) ⇒ Q(x) is true for everyx ∈ X then the
complexity of proofs and proofs themselves may be different for differentx ∈ X. A
topological analogy with topological bundles can be used, the setX being the base and
the prooffx for eachx ∈ X being the fibre.

2.2.7 Induction analysis of mathematical results and theoriesMathematical re-
sults and theories should be analyzed with respect to the existence of Noetherian in-
duction proofs. Suppose the statement∀ x ∈ X P (x) is true, does there exist a well-
founded relationR ⊆ X ×X such that the statement can be proved using Noetherian
(structural) induction onR? The complexity of involved well-founded sets and induc-
tion steps can be considered as complexity and value measures.

2.2.8 Complexity-theoretic approachesGiven an implication or a prooff : P → Q
we can measure the (deterministic) complexity off as some computational complexity
measure (time or space-related) of a computational process producingf . An example of
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such a measure can be proof size considered in proof complexity branch of proof theory.
Value of mathematical results can be estimated considering their impact on computation
complexities (time, space, parallelability etc.). A result can be considered valuable if it
has a computational value such as reduction of complexity classes of computational and
decision problems. On the contrary, a result may be considered easy if it amounts to a
polynomial-time reduction. History of mathematics should be studied as a network of
complexity reductions.

2.3 Metamathematical aspects - a mathematical justification/regress step

Since the research in this program has not even started it may be too early to speculate
about metamathematical and philosophical problems related to the regress step dis-
cussed here such as the mathematical “problem of the criterion”, see (Chisholm, 1989),
(Cling, 2014), or the M̈unchhausen’s (Agrippa’s) trilemma, see (Albert, 1991). The
Münchhausen trilemma case determination (i.e. whether the proposed intra-mathema-
tical regress is cyclic, infinite non-cyclic or finite) seems to be an important problem.
Mapping (justifying) a mathematical theoryT to a simpler mathematical objectρ(T )
may induce another justification step - from the theory ofρ(T ) to another mathematical
objectρ(ρ(T )).

2.4 Applications - research guidance and value of mathematical texts

A mathematically sound method for measuring value or complexity of mathematical
results would also allow setting rigorous standards for mathematical research and dis-
course. It should involve research directions and problems, the value of mathematical
results and complexity of proofs.

2.4.1 Research guidanceResearch problems and new mathematical objects are often
insufficiently motivated. Mathematical research processes, problems, conjectures and
research interests should be motivated by rigorous analysis based on an implication and
proof modelling/coordinatization theory. Such a theory would show valuable problems,
computations and/or directions which need to be studied to advance the understanding
of a given domain, missing or optimal concepts that need to be introduced, proofs that
need to be modified, mathematical regress steps (mappings to simpler objects) that need
to be done etc. It would direct the development of mathematics, link and rank various
areas of mathematics.

2.4.2 Control of the publishing processApart from guiding mathematical research
and improving mathematical texts new advances in proof modelling and the complexity
theory could impact the dissemination of mathematical texts.

The current competition-oriented, trend-based and partially dogmatic evaluation of
results and merits can not be considered justified in mathematics - the very source and
centre of the culture of unbiased logical reasoning and numerical analysis. The lack of
a rigorous evaluation theory is a sign of backwardness in the same way as the lack of
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mathematical modelling is such a sign in any other area. A rigorous evaluation method
based on mathematical analysis of results and techniques must be found.

A rigorous proof complexity and value theory would allow to define and determine
values of correct results more rigorously and set standards for them. Research result
evaluation should be reduced to computation. Some of the current features of publish-
ing which are used to cover social processes, would become redundant. A theory may
allow to rigorously compare and uniformize different areas, projects and activities of
mathematics. It would be a helpful research tool for working mathematicians. Infor-
mation about all known mathematical results could be stored as a single database. The
author suggests to complement or replace the existing publication system (journals) by
a single international database which would openly, in a certified way, evaluate suffi-
ciently motivated and complex results.

3 Some concrete proposals

We formulate a few specific initial research proposals: 1) analyze the body of facts of
the Euclidean geometry with respect to the implication modelling and Hilbertian sim-
plicity idea, create a database of all nonequivalent logical steps, 2) analyze the body of
combinatorics with respect to structural induction, create a database of all nonequiv-
alent induction arguments, 3) analyze the body of graph theory with respect to the
proof bundle idea, 4) classify invariants and object properties in a mathematical domain
with respect to computational complexity (e.g. polynomial or NP-complete) of deci-
sion problems, study the network of computational reductions, 5) introduce measures
of cognitive complexity of mathematical activities in school mathematics courses.

4 Conclusion

We have given some arguments which describe a proposal for possible future research
in mathematical logic. It can be defined as a faithful mathematical representation of
implications, proofs and theories. The main argument is a possibility to formalize, map
into simpler mathematical objects and measure logical implications, to make nontriv-
ial and creative mathematical theorem proving a computation. Another argument is a
possibility to rigorously measure mathematical results and to guide the mathematical
research rigorously and optimally. We consider it the most important unsolved problem
of modern mathematics.
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