
Baltic J. Modern Computing, Vol. 8 (2020), No. 2, 315-326 
https://doi.org/10.22364/bjmc.2020.8.2.07 

Assessment of Machine Learning Methods for 

Seagrass Classification in the Mediterranean 

Tolga BAKIRMAN
1
, Mustafa Umit GUMUSAY

2 

1 Istanbul Technical University,  Research and Application Center for Satellite Communications 

and Remote Sensing, Istanbul, Turkey 
2 Alanya Alaaddin Keykubat University, Faculty of Engineering, Department of Civil Engineering, 

Antalya, Turkey 

tolga@cscrs.itu.edu.tr, umit.gumusay@alanya.edu.tr 

Abstract. Posidonia oceanica is an endemic seagrass species in the Mediterranean. Even though 

this species has been put under protection, P. oceanica is currently listed as threatened. Therefore, 

in order to conserve this species, high resolution, accurate and temporal distribution maps are 

needed to be produced. In this study, it is aimed to create seagrass distribution maps with machine 

learning algorithms namely as random forests and support vector machines using WorldView-2 

imagery. In-situ data has been collected via underwater video and scuba diving for classification 

training and testing. Atmospheric, radiometric and water column corrections are applied for pre-

processing of the optical satellite image. The light penetration in the water is limited by depth. 

Therefore, we have limited our study area based on maximum depth of 20 meters. The 

classification accuracies and Cohen’s kappa coefficients are calculated as 94% and 0.89 for 

random forests, 71% and 0.61 for support vector machines, respectively. According to the results, 

it can be clearly said that random forests method is superior to support vector machines for 

seagrass mapping in our study area. The proposed framework in this study enables to rapidly 

produce seagrass distribution maps which can be used to monitor temporal change for a  

sustainable ecosystem. 
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1. Introduction 

Posidonia oceanica is an endemic plant which is acknowledged as one of the most 

valuable ecosystems in the Mediterranean ecosystem (Badalamenti et al., 2015). 

However, P. oceanica meadows are declining in the Mediterranean (Hughes et al., 2009). 

Therefore, it is vitally important to prevent the risk of seagrass extinction by assessment 

of present state and spatial pattern, investigating the cause, cycles and processes of 

degradation and monitoring for preservation and restoration (Hossain et al., 2014). 

Due to time and scales limitations of classic surveying techniques such as point or 

transect based surveys, information is scarce about benthic habitat’s ecologic function 

and geographic diversity (Wright and Heyman, 2008). Geological and biological 

researches about seafloor by collecting samples from sea bottom such as grab and trawl 

is not sufficient to characterize biological patterns and processes (Eleftheriou, 2013; Van 
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Rein et al., 2009). Even though these techniques provide detailed information in local 

areas, they are not operable to present biological characteristics of the sea floor in 

regional and national scales (Brown et al., 2011). 

Optical remote sensing products provide cost effective solutions and have wide 

coverage areas for shallow coastal systems. They can produce more detailed, accurate 

and comprehensive spatial distribution maps than classical surveying techniques (Lyons 

et al., 2011). They have been benefited in benthic studies with the advances in remote 

sensing techniques (Franklin, 2010). Since the penetration of light in water is poor based 

on turbidity, these researches are limited in shallow coastal areas (Brown et al., 2011).  

Optical satellite images are widely used in seagrass detection, aerial coverage, 

distribution mapping, extent and biomass change detection studies (Hossain et al., 2015). 

Since P. oceanica is an essential plant for Mediterranean, this species is extensively 

investigated by the researchers (Gumusay et al., 2019). Pasqualini et al. (2005) have 

compared P. oceanica mapping accuracies of SPOT 2.5 m and SPOT 10 m imageries. 

Fornes et al. (2006) have investigated the use of IKONOS imagery for P. oceanica 

mapping with maximum likelihood supervised classification. Matarrese et al. (2008) 

have produced P. oceanica meadows maps of Taranto Gulf, Ionian Sea using IKONOS, 

ETM+ and ASTER imagery. Borfecchia et al. (2013) have proposed an integrated 

methodology including QuickBird imagery and spectral vegetation indices for P. 

oceanica mapping. Matta et al. (2014) have focused on the extraction of P. oceanica 

cover in the shallow waters (< 10 m) of the Gulf of the Oristano, Italy using RapidEye 

imagery. Hachani et al. (2016) have utilized Google Earth imagery to map P. oceanica in 

the south eastern Gulf of Tunisia with minimum distance classification method. 

Traganos and Reinartz  (2018a) have investigated mapping distribution of P. oceanica in 

Thermaikos Gulf, north-western Aegean Sea with Sentinel-2 imagery using maximum 

likelihood, support vector machines (SVM) and random forests (RF). Similarly, the 

same authors applied a semi analytical inversion model on Sentinel-2 imagery to obtain 

P. oceanica extent in the same study area (Traganos and Reinartz, 2018b). Topouzelis et 

al. (2018) have mapped seagrasses in Greek territorial water including P. oceanica using 

Landsat-8 imagery.  Poursanidis et al. (2019) have focused on the contribution of the 

coastal aerosol band of Sentinel-2 for habitat mapping and satellite-derived bathymetry.  

In this study, it is aimed to assess the performance of machine learning techniques 

for seagrass classification using WorldView-2 imagery in Gulf of Gokova in the 

Mediterranean coast of Turkey. After pre-processing of WorldView-2 imagery, random 

forests (RF) and support vector machine (SVM) supervised machine learning 

classification techniques are applied to map P. oceanica distribution. 

2. Materials and Methods 

2.1. Study Area 

The study area is the Gulf of Gokova which is located in the Mediterranean coast of 

Turkey (Figure 1). Gokova Bay is an ideal spot for seagrass habitats, especially for P. 

oceanica. Even though P. oceanica is able to live up to 50 meters of depth (Duarte, 

1991), the study area is limited to maximum 20 meters of depth since the penetration of 

light into the sea is limited. Therefore, our study area size is around 8.6 km
2
 of sea floor. 
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Figure 1. The study area 

2.2. Satellite Image 

In this study, we have used WorldView-2 imagery captured on 20 July 2010 for machine 

learning classification. We have only used Red, Green and Blue bands of the image. In 

our study area, these bands have spatial resolution of 2 meters. Technical specifications 

of WorldView-2 satellite have been given in Table 1. 

Table 1. WorldView-2 satellite technical specifications 

 

Specification Value 

Launch Date  8 October 2009  

Orbit Height  770 km  

Panchromatic Resolution  0.46 m (Nadir)  

Multispectral Resolution 1.84 m (Nadir)  

Number of Bands  8  

Scan Width  16.4 Km (Nadir)  

2.3. In-Situ Data 

In order to train machine learning classifiers and carry out accuracy assessment, in-situ 

data has been collected by scuba diving and underwater video. We collected seagrass 

presence positions using RTK-GNSS solutions. We also took advantage of a recent 

report into Gokova Bay’s biodiversity (Okuş et al., 2006). 
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2.4. Pre-Processing 

We aimed to extract current seagrass coverage using optical imagery via classification 

for accuracy assessment of the model. The use of optical satellite images in marine 

applications is limited by water turbidity, which affects light penetration in the water. 

Therefore, we were able to perform a classification analysis efficiently in Gokova Bay 

within a depth limit of 20 meters which was determined using electronic nautical charts 

(ENCs). 

As the seafloor is not observed directly, satellite images should undergo a pre-

processing phase. Satellite images usually come in digital numbers (DNs) based on the 

radiometric resolution, which contains atmospheric effects. DNs are converted to surface 

reflectance in two steps using atmospheric/radiometric corrections. First, DNs are 

transformed to radiance, which is band interleaved by line raster in μ𝑊/(𝑐𝑚2×𝑠𝑟×𝑛𝑚) 

units. 

 The radiance image is then converted to surface reflectance using atmospheric 

correction methods. There are various atmospheric corrections methods used in P. 

oceanica studies in the literature. Borfecchia et al. (2013) have exploited COST method 

for atmospheric correction of QuickBird imagery. Matta et al., 2014 have corrected 

atmospheric effects with 6SV. Traganos and Reinartz (2018a) have used ATCOR 

software for this purpose. The same authors have tried a different approach in their 

another study by using C2RCC (Traganos and Reinartz, 2018b). Poursanidis et al. 

(2019) performed atmospheric corrections with Sen2Cor for Sentinel-2 imagery. In this 

study, the Fast Line-of-sight Atmospheric Analysis of Spectral Hypercubes (FLAASH) 

tool, which is based on Moderate Resolution Atmospheric Transmission (MODTRAN), 

was used. MODTRAN provides information on atmospheric components such as water 

vapour, aerosol, visible range, etc. from the best spatially suitable model among 6 

atmospheric models. The mid-latitude summer (MLS) atmospheric model was used to 

obtain surface reflectance values. The MLS atmospheric model used values of 2.92 

g/cm2 for water vapour and 21° C for the surface temperature. 

Once the image is radiometrically and atmospherically corrected, water column 

correction needs to be applied to the image in order to remove the effects of the water 

column on bottom reflectance prior to classification. Water column correction methods 

can be summarized into three categories namely as band combination algorithms, model-

based algebraic algorithms and optimization/matching algorithms (Zoffoli et al., 2014). 

For example, Traganos and Reinartz (2018a) and Poursanidis et al. (2019) have used 

analytical model of Maritorena et al. (1994) for this step.  In this study, a widely used 

band combination algorithm proposed by Lyzenga (1981) was used. This common 

method in marine remote applications is based on the creation of Depth Invariant Indices 

(DIIs) using the attenuation ratios of bands in the visible range only (RGB) as other 

bands cannot penetrate to seafloor. This ratio is calculated based on a region with a 

single bottom type (generally sand) and varying depth using (1) which provides the 

attenuation ratio of band i to band j. The variable a is calculated using (2): 

 

 
𝐾𝑖

𝐾𝑗
= 𝑎 + √(𝑎2 + 1) (1) 

 𝑎 =
𝜎𝑖𝑖 − 𝜎𝑗𝑗

2𝜎𝑖𝑗
 (2) 
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where σ_ii is the reflectance in band i, 

σ_jj is the reflectance in band j, 

σ_jj is the covariance of reflectance values band i and band j and calculated as: 

 

 𝜎𝑖𝑗 = 𝑋𝑖𝑋𝑗
̅̅ ̅̅ ̅̅ − 𝑋𝑖̅𝑋𝑗̅                   (3) 

   

where Xi and Xj is the reflectance values in the base region for band i and band j, 

respectively.  

        According to (4), DII of band i and band j is calculated using the attenuation ratio. 

DIIs are calculated for each band pair. For example, DIIs of Yij, Yik and Yjk must be 

calculated for three band Xijk image. A subset image of before and after DIIs calculation 

is shown in Figure 2. 

 

 
 

 
 

Figure 2. (a) Before water column correction, (b) After water column correction 

Classification methods were then applied to DIIs obtained via pre-processing. In this 

study, two different machine learning algorithms were utilized for seagrass classification 

in Gokova Bay. Due to their proven image classification performance, both the SVM 

and RF methods were chosen to create continuous seagrass distribution maps from the 

available WorldView-2 satellite image from 20 July 2010. We have used the 

WorldView-2 image based on availability in the Gulf of Gokova. Classification analysis 
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for seagrasses could also be performed on other optical imagery with RGB bands which 

is widely investigated by (Hossain et al., 2015). 

2.5. Machine Learning Classification 

SVM is a machine-learning method developed by (Vapnik, 1995) which is based on 

statistical learning and structural risk minimization from training samples. Support 

vectors are created by constructing decision functions using training samples. The 

optimum hyperplane is defined by using support vectors (Vapnik, 1995). 

Suppose a binary classification problem with two linearly separable classes where 

{𝑋𝑖  , 𝑌𝑖} i=1 
N is the training space, where N is the size of training space and Yi ={-1 , +1} 

are target values of respective classes (Haykin, 2009). An optimum hyperplane can be 

defined as: 𝑤 × 𝑥𝑖 + 𝑏 = 0where w is the weight vector, xi is the input space and b is bias. 

w and b are estimated as: 

w × x𝑖 + b ≥ +1              for Yi =+1 (Class 1) 
(4) 

w × x𝑖 + b ≤ −1              for Yi = -1 (Class 2) 

The distance between spaces of two classes is defined as 2/‖w‖. ‖w‖ value must be 

maximized to maximize the distance hence, to obtain a better separation. By using 

Lagrange multipliers (α), the optimization problem can be redefined as: 

 
L(w, x, α) =  ∑ αi −  

1

2

N

i=1

 ∑ ∑ αiαjYiYjXiXj

N

j=1

N

i=1

 (5) 

The input space is transformed into a higher dimension space by applying kernel function for 

better separation. The above equation can be written using the kernel function where (𝑥i , 𝑥𝑗 ) = 

ɸ( 𝑥𝑖 ) ∙ ɸ( 𝑥𝑗): 

 L(α) =  ∑ αi − 
1

2

N
i=1  ∑ ∑ αiαjyiyjK(xi, xj)

N
j=1

N
i=1  (6) 

 

There are four widely used kernel functions namely as linear, polynomial, radial 

basis and sigmoid. In this study, the kernel function, gamma and penalty parameters are 

used as radial basis function, 0.333 and 100, respectively. SVM classification is carried 

out using ENVI image analysis software. 

 RF is an ensemble classifier proposed by (Breiman, 2001) that forms a powerful 

classification model by combining a number of individual tree predictors. It is an 

efficient method as significant improvements can be achieved in the classification 

accuracy by letting the individual trees vote for the most popular class. The 

generalization error of an RF classifier depends on the strength of the individual trees in 

the forest. 

Individual trees in the decision forest are constructed from created features from the 

dataset. Bootstrap sampling method is used for feature selection. Tree development from 

the selected features is utilized with Classification and Regression Tree (CART) method. 

CART method uses Gini index for optimum feature selection. Gini index is a confusion 

based method that calculates the differences between the probability distributions of the 

target attribute values for a specific dataset (Han et al., 2012). 

 

𝐺𝑖𝑛𝑖(𝐴) = 1 − ∑ 𝑝𝑖
2𝑛

𝑖=1      (7) 
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where pi is the probability of that class in the dataset A. Gini index is calculated for a 

binary split for each class. In order to obtain the best split for a class, all possible subsets 

are evaluated. Gini index for the divided dataset can be calculated  using (8). Minimum 

value of Gini index provides the best split for a binary subset. This process is repeated 

for each class. In the decision process, class estimates of all trees are examined and the 

class with the most votes are considered as the result of the decision forest. 

 

 𝑮𝒊𝒏𝒊(𝑨) = |
𝑨𝟏

𝑨
| 𝑮𝒊𝒏𝒊(𝑨𝟏) + |

𝑨𝟐

𝑨
| 𝑮𝒊𝒏𝒊(𝑨𝟐)  (8) 

 

There are two parameters in RF model namely as tree count and random variable. 

The dataset is split into training and test for tree development. The development of a 

classification tree in RF model can be summarized as; 

• N number of random data is collected from the original dataset for number of N 

training data. 

• Suppose that the number of input is M. m number is defined as m<M for each 

node. M value is constant for each tree in the forest. 

• The trees develop as large as possible. 

These steps are repeated for determined tree count. The error ratio that can be 

encountered during tree development depends on the stability of each tree and 

correlation between two trees. If the correlation between two trees increases, forest error 

ratio increases with it. Likewise, if the stability of each individual tree in the forest 

increases, the error ratio decreases. The correlation and the error ratio depend on the 

value m. Smaller values of m cause smaller correlation and less stability, larger values of 

m results in the opposite conditions.  

In this study, RF classification is carried out MATLAB environment using tree count 

and random variable as 40 and 2, respectively. These values are determined empirically. 

3. Results and Discussion 

The seagrass distribution map of Gokova Bay was produced with WorldView-2 satellite 

imagery using RF and SVM machine learning methods. The classification accuracies 

and Cohen’s kappa coefficients were calculated as 94% and 0.89 for RF, 72% and 0.61 

for SVM, respectively. According to Landis and Koch (1977), kappa values between 

0.81-1 and 0.61-0.80 are referred as ‘Almost Perfect’ and ‘Substantial’, respectively. 

While RF produced promising results, the SVM method was not able to classify 

continuous seagrass distribution with a satisfactory level of accuracy. 

Classification results are given in four subset areas where relatively denser seagrass 

occurs in Gokova Bay. Northern study area classification results are given in Figure 3. 

SVM was not successful at extracting seagrass coverage. On the contrary, RF produced 

better results even though seagrass in this region is not much dense. 

Classification results of Region 2 (Southeast of the study area) are given in Figure 4. 

Both classification methods extracted seagrass coverage parallel to the shore. This kind 

of seagrass distribution may be due to morphology with high slopes. It can be clearly 

said that SVM performed relatively well in this region. 

Region 3 is where the densest seagrass occurs. This may be due to the fact that this 

region is the least wave induced area in the study area. Classification results of Region 3 

(South of the study area) are given in Figure 5. Even in dense seagrass conditions, SVM 
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was not able to extract continuous seagrass distribution. Both classification techniques 

extracted patchy seagrass distribution in Region 4 (Southwest of the study area). 

 

 
 

Figure 3. Classification results of Region 1 (north of the study area)  

for (a) random forests and (b) support vector machines 

 

 
 

Figure 4. Classification results of Region 2 (southeast of the study area) 

 for (a) random forests and (b) support vector machines 
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Figure 5. Classification results of Region 3 (south of the study area)  

for (a) random forests and (b) support vector machines  

and Region 4 (southwest of the study area) for (c) random forest and (d) support vector machines 
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A total area of 8.6 kilometre square has been classified. Seagrass coverage area has 

been calculated as 24.63 ha and 10.75 ha by RF and SVM, respectively. Traganos and 

Reinartz (2018) have also compared performances of SVM and RF for P. oceanica 

mapping. In their case, SVM performed better than RF. Therefore, it is safe to say that 

our results here are not universal. The performance metrics may rather rely on used 

imagery, season and water characteristics of the study area. Additionally, Poursanidis et 

al. (2019) have investigated the effect of the coastal band in Sentinel-2 to P. oceanica 

classification. They have stated that coastal band in the imagery improves accuracy and 

moreover, it can also expand the maximum depth that can be observed. WorldView-2 

imagery used in our study also includes coastal band and this can also be exploited for 

future studies. 

It can be observed that recent seagrass related studies rely on machine learning 

methods rather than former state of art methods such as maximum likelihood and 

minimum distance. However, to the best of our knowledge, even though there are limited 

seagrass studies using deep learning with UAV (Martin-Abadal et al., 2018) and 

underwater videos (Martin-Abadal et al., 2019), there is no study to date utilizing 

recently trending deep learning methods with satellite imagery for seagrass mapping. 

Since information about seagrass coverage is scarce and deep learning requires large 

amount of data to train, this creates a bottleneck to apply deep learning techniques for 

benthic studies. 

 

4. Conclusions 

In this study, seagrass coverage maps have been produced using WorldView-2 imagery 

using RF and SVM supervised machine learning classification and in-situ survey 

samples in Gokova Bay which is located on the Mediterranean coast of Turkey. The 

study shows that WorldView-2 imagery can be exploited for benthic studies. The results 

have also shown that RF method was able to produce more accurate and extract more 

continuous seagrass coverage. Even though SVM method is able to provide results with 

moderate accuracy, visual inspections and post-processing reveal that SVM results are 

not reliable. 

The machine learning classifications are carried out using RGB bands. WorldView-2 

also provides coastal band. Our future work is to include coastal band into the 

classification phase to investigate its effect on performance and accuracy. 
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