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Abstract. Image processing has become a very popular topic in recent years with images obtained 

by photogrammetry, remote sensing and computer vision. Deep learning practices are progressing 

rapidly with this innovation. Object detection, one of the new subjects of deep learning, is applied 

to high resolution aerial or remote sensing images to ex.tract information from these images. 

Traditional convolutional neural network (CNN) methods perform estimates in two stages but 

remain slow in terms of speed performance. You Only Look Once (YOLO) method that is used for 

real-time object detection, is quickly performed using a single convolutional neural network. In 

this study, YOLO-v3, YOLO-v3-spp and YOLO-v3-tiny models were applied in the Google Colab 

environment using python programming language. The comparison of YOLO models trained on 

COCO data was performed on the video obtained separately from a UAV and the terrestrial 

camera to identify the vehicles. As a result of the study, the highest results were obtained in 

Yolov3-spp method with average IoU 84,88% and precision value as 72,02%. 
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1. Introduction 
 

The detection of vehicles ahead and the traffic conditions while driving are 

important factors for safe driving, accidental cruising and automatic driving and tracking 

(Jazayeri et al. 2011). Especially real-time perception plays an important role in the 

development of autonomous vehicles. Therefore, image processing can be used for these 

purposes. Image processing that has become a popular topic in photogrammetry is used 

for a variety of applications. However, it is a method used to extract some useful 

information from the original images obtained. The advancing technology provides 

many possibilities to develop methods to obtain some useful information from the 

original images, such as the detection, identification and classification of the objects. In 

particular, the detection and classification of objects in image content have been one of 

the main subjects in the literature on computer vision and photogrammetry (Yang et al., 

2019). 
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       Convolutional neural networks (CNN) have become a standard tool for many 

applications in computer vision and machine learning. CNN-based object sensors have 

made successful and important steps in object detection with the advancement of 
technology. CNN-based approaches consist of two classes, two-stage and one-stage 
detection methods (Dai, 2019). Two-stage classes include object detection methods such 

as regions with convolutional neural networks (R-CNN), Fast R-CNN and Faster R-

CNN. In R-CNN, the image is first divided into region proposals and then CNN is 

applied for each region respectively. The size of the zones is determined and the correct 

zone is placed in the artificial neural network (Girshick et al., 2014). Although these 

methods have more accurate than single-stage methods, prediction of the features makes 

them slow. You Only Look Once (YOLO) is a single-stage object detection method. 

Additionally, classifying the image by CNN used for object detection, especially for the 

desired objects, YOLO solves the object perception as a regression problem. It can 

obtain the position of the object, category and corresponding confidence score, further 

increase the detection speed and detect the object in the real-time target (Redmon et al., 

2016). In the study of Tashiev et al. (2017), real-time classification of intelligent 

transport systems to provide solutions to traffic systems was performed. Classification is 

made using the convolutional network YOLO model on the BIT-Vehicle data set. 

Images are obtained from two different cameras with 1600x1200 size and 1920x1080 

size. The model works with 90.35% accuracy. Han P. et al. (2019), the DRoINs network 

model was created for the analysis of changes occurring at different times over aerial 

images obtained by Unmanned Aerial Vehicles (UAV). To prevent seasonal errors, the 

dataset contains 1246 pairs of images. The data set includes 8 categories of cars, boats, 

motorcycles, aircraft, tractors, trucks and pickups. The experiment was carried out with a 

computer with 12 Xeon 2.5 GHz CPUs core and 128 GB memory and GeForce GTX 

1080 Ti GPU and 44G memory. The model was compared with YOLOS and RPNS 

models. The network outperformed other models with a 94.9 mAP ratio. Another study 

(Carlet and Abayowa, 2017) innovations were made to improve the performance of the 

YOLOv2 model designed for real-time object detection. The YOLOv2 model, which 

was developed for better detection of vehicles from aerial images, was compared in the 

data sets of VEDAI, DLR3k, NeoVision2-Helicopter, AFVID 1, AFVID 2, AFVID3, 

AFVID4 and AF Building Camera. The proposed improved YOLOv2 model yielded 

successful results. 

 

       The scope of this study is to compare the methods of object detection methods, 

which are added every day, by using the aerial and terrestrial videos to find the 

appropriate methods according to the data group. In addition, the deficiencies and 

advantages of the methods are revealed and the results that will form the basis for new 

models are obtained. This study aims to compare object detection methods on aerial and 

terrestrial videos to find suitable methods according to the data group. In addition to the 

local video, the videos obtained from unmanned aerial vehicle (UAV) were also used in 

the study. Vehicle detection from UAV images has some difficulties due to the 

extremely high resolution of the images. These problems were also examined in the 

study. Especially, the performance of methods has been compared to find the car on 

video frames. Thus, precision and average Intersection over Union (IoU) of the car was 

investigated. In accordance with real-time applications, the methods were performed 

over real data.  The results represented as tables. As a result of the study, inferences 

about the use of vehicle detection with deep learning in real time applications have been 

provided. 
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2. CNN Structure for Object Detection 
 

CNNs can be defined as systems that implement the learning ability which is the basic 

function of the human brain for computers. It was originally inspired by the visual cortex 

in biology. The visual cortex consists of small cells that are sensitive to specific areas of 

the visual field (Oztemel, 2012). Inspired by the discovery that neurons systematically 

create a visual perception through a horizontal architecture, the foundations of CNNs 

have been formed. Convolutional neural networks consist of a plurality of convolution 

layers, non-linear, pooling and fully connected layers.  

 

2.1. Convolutional Layer 
 

Convolutional layer is the first layer of neural networks and it is composed of the pixel 

value sequence of the input image. The input image has size of m x m x r. r is the 

number of bands (r = 3 for RGB image), m is the height and width of the image. The 

first layer consists of k filters that have n x n x q dimensions. When finding the filter 

value array, select the q value that is the same as the variable n and, r which is smaller 

than the size of the image. The filters generate k interconnected activation (feature) maps 

(Ozkan and Ulker, 2017). The property map consists of regions where the individual 

properties of each filter are extracted. Depending on the intensity of these properties, it is 

determined which regions are more important. On the input image, a smaller-sized filter 

matrix is passed through the image (3x3 filter is applied to the 5x5 input image). At each 

step, the filter coefficients are multiplied by the values in the corresponding color 

channel and their totals are calculated. The activation map is created by collecting all 

three channels. 

 

2.2. Rectified Linear Unit 
 
The rectified linear unit (ReLu) follows the convolution layer and has the activation 

function. The objective in this layer is to apply the linear structure obtained from the 

previous layer to a non-linear structure. This layer increases the speed of learning in the 

network. 

 

2.3. Pooling Layer 
 

Pooling layer usually follows the ReLu layer. Its main purpose is to reduce the input size 

for the next layer (Oztemel, 2012). As with the convolution layer, certain filters are 

defined in the pooling layer, and by applying these filters in a specific order on the 

image, the pixel values can be calculated in two different ways; average pooling and 

maximum pooling. For maximum pooling, the highest values of the pixels in the image 

are selected. In the average pool, the average values of the pixels in the image are taken.  
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2.4. Fully Connected Layer 
 

In the CNN structure, ReLu and the pooling layer are followed by a fully connected 

layer (FC). It connects all neurons from the convolution and pooling layer with different 

combinations to produce better properties (Redmon et al., 2016).  

2.5. DropOut Layer 
 

The DropOut layer improves the performance quality of the network by preventing the 

memorization of the neural network. 

3. Methodology 

3.1. Data Used 

 
In the application, video obtained from UAV (van Es, 2017) with 1280x720 resolution 

and video obtained with terrestrial resolution of 1080x1920 were used. Both of the 

videos have a frame rate of 24 frames per second and the length of the videos is about a 

minute. The video obtained from the UAV was produced obliquely instead of nadir. 

Because the YOLO algorithm does not give results in the images obtained from the nadir 

due to the training set. The videos were used directly without any pre-processing steps. 

3.2. COCO Dataset 

YOLO model uses COCO dataset. COCO is a data set consisting of 80 separate classes 

such as cars, dogs, planes, bicycles, bags, and phones (Figure 1.) (Radovic et al., 2017). 

The data set contains 80,000 training images and 40,000 verification images.  

 

 

 
 

Fig. 1. Sample images of car class from COCO dataset (Lin et al., 2014) 
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3.3. YOLO Object Detection 

 
YOLO that is an open-source object detection and classification algorithm 

based on the CNN network. Conventional CNN networks generate regional predictions 

to suggest bounding boxes. This is followed by the step of grading, correcting, and 

removing duplicates of the bounding boxes. It re-scores all bounding boxes based on the 

objects found. Finally, the region with the highest score on the image is considered as 

detected (Figure 2.). In YOLO, it can predict which objects are present in an image and 

their positions at first glance. It performs object detection by spatially separated 

bounding boxes and predicting the entire image with a single neural network. The main 

advantage of this approach is that the whole image is evaluated by a single neural 

network and object detection according to the predicted regions (Radovic et al., 2017).  

 

 
 

Fig. 2. YOLO workflow diagram. 

 

The structure of YOLO algorithm consists of conventional neural networks 

(Figure 3.). YOLO starts detecting the object by dividing the input image into SxS gray. 

In general operation, only one object is estimated with each grid cell. Bounding boxes 

are created for each grid cell and assign trust points to these boxes. Each boundary box 

contains 5 variables: x, y, w, h and C. For the bounding box width, w is calculated, and h 
for the height. X and y represent the center of the box. For each grid, there are 80 

conditional class probabilities (C), with the probability that the detected object belongs 

to a particular class (Redmon and Farhadi, 2017). When constructing a trust score, it 

measures both the classification and the trust of the object in its location. The trust score 

is zero when the grid does not contain any objects. The final output of the YOLO 

estimate is the tensor S x S x (B x 5 + C). The main concept of YOLO (7,7,30) is to 

create a single CNN network to estimate its tensor. It uses those with a confidence score 

higher than the 0.25 threshold when estimating with bounding boxes (Radovic et al., 

2017). 

https://tureng.com/tr/turkce-ingilizce/work%20flow%20diagram
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Fig. 3. The architecture of YOLO (Redmon et al., 2016) 

 

3.4. YOLO Mathematical Model 

 

3.4.1. Lost Function. YOLO makes its prediction with bounding boxes. To calculate the 

true positive (TP), it must find the object. As shown in Eq. (1), YOLO uses the total 

squared error on the real plot to estimate the losses that occur when finding the real 

object (Redmon et al., 2016). The loss function consists of loss of classification 

(classError), loss of localization (coordError) and loss of position confidence (iouError).  

 

                                   iouError + coordError+classError=loss

2s

0


i

                                    (1) 

 

where s is number of grids, classError is classification error, coordError is localization 

error, iouError is confidence error. 

 

3.4.2. Classification Error. The classError is the classification error value (Eq. (2)). The 

classification function results in the correctness of the estimated object.  
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where 1
obj

ij =1 if an object appears, otherwise 0, )(ˆ cpi
- conditional class probability for 

class c. 

 

3.4.3. Localization Error. With the loss of localization, the accuracy of the estimated 

bounding box is calculated. The equation is measured by errors in the position and 

dimensions of the bounding box as shown in Eq. (3) (Redmon et al., 2016). 
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where B is boundary box, x and y are offsets to the corresponding cell, w is width of 

image, h is height of images, coord  increase the weight for the loss in the box 

coordinates, obj

ij1 =1 if the jth boundary box in cell i is responsible for detecting the object, 

otherwise 0. 

 

3.4.4. Confidence Error. Eq. (4) which is loss of confidence is calculated separately 

depending on the presence or absence of the bounding box and the object. If an object is 

detected in the boundary box; 
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where iĈ is confidence score.  

If an object is not detected in the box, the confidence error is; 
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where 
noobj

ij1 is the supplement of 
obj

ij1 , noobj is weights to prevent class unbalance 

because of most boxes do not contain objects. 

 

In the application, the video obtained from the UAV with the video obtained 

from the UAV with sky tools traffic monitoring DJI INSPIRE 2 + POWERLINE Cam 

X5S 15mm was used distance of 50 m from ground. The other video that was obtained 

as terrestrial with a resolution of 1080x1920 was used. Terrestrial video was obtained 

manually by 1080p with 12 MP camera. The algorithms were run on a virtual computer 

that has 12 GB of RAM and an NVIDIA Tesla K80 GPU graphics card. 

3.5. Evaluation Metrics 
 

In the study, average IoU (Eq. (5)) and precision (Eq. (6)) values were calculated for 

comparison. In order to calculate these, True Positive (TP), True Negative (TN), False 

Positive (FP) and False Negative (FN) values should be determined. 

TP: True Positive refers to plane points which are included inside the detected model.  
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TN: True Negative refers to non-plane points which are outside the detected model. 

FP: False Positive refers to plane points which are not included inside the detected 

model. 

FN: False Negative refers to non-plane points which are included inside the detected 

model (Alpaydin, 2010). 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
                                                   (5) 

 

𝐼𝑜𝑈 =
𝑇𝑃

𝑇𝑃+𝐹𝑃+𝐹𝑁
                                                            (6) 

4. Results and Discussion 
 

The study was carried out on the Google Colab cloud service. The algorithm, taken from 

the COCO dataset of weights that are trained on 80,000 training images, was run using 

the open source artificial neural network called as Darknet library. Only the vehicles are 

focused as objects to be determined. 

 
As a result of the study, vehicles from video images were detected by YOLOv3, 

YOLOv3-spp and YOLOv3-tiny. The object type and IoU value for each detected 

vehicle are displayed by the algorithm on the bounding box. For classification 

assessment of the algorithm, it is necessary to compare the model with the actual results. 

In this study, from the simple and fast methods working in easy and homogeneous 

backgrounds, the deep learning methods used against the complex and difficult problems 

were evaluated. In order for the specified object to be considered correct, the IoU value 

must be 0.5 and above, similar to previous studies (Redmon et al., 2017). Even if the 

object is correctly named in aerial video, since the IoU value is less than 0.5, this is not 

considered an accurate object. YOLOv3-spp model was the most successful method with 

84.88% on the ground accuracy of the methods on the COCO dataset (Table 1). Average 

IoU was reached in the terrestrial video (Figure 5.) with 88.56% and UAV videos 

(Figure 4.) with 81.21%. The YOLOv3-tiny method fails to detect small objects (Yi et 

al., 2019).  As the UAV video videos are obtained from a distance, the object cannot be 

detected with YOLOv3-tiny. Therefore, the YOLOv3-tiny method did not yield any 

results in the video obtained by UAV in the real ground value and accuracy 

comparisons. YOLOv3-spp model is more successful with a precision of 72.02% in 

accuracy results; 63.53% precision was achieved in UAV and 80.49% in the terrestrial 

video (Table 2). In both model comparisons, both models yielded results in terms of 

model estimation and accuracy factor, and it was found to be more suitable with high 

performance on terrestrial videos. With the data set suitable for the targeted study, 

successful determinations can be made on the vehicles in UAV images. To increase the 

accuracy factor, training and verification procedures are important in the data set 
suitable for the data used as input. With the data set to be used, more successful 

detections can be realized in parallel with the targeted study purpose. The most 

important reason for the low accuracy in aerial video is that the data set used is more 

suitable for terrestrial images. However, with stronger training, success rates will 

increase confidence in deep learning methods.  
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Fig. 4. Detection of vehicles by YOLOv3, YOLOv3-spp and YOLOv3-tiny method on UAV 

image (top to bottom) 

 

 



356  Cepni et al. 

 

 

       

   

 

   

Fig. 5: Detection of vehicles YOLOv3 YOLOv3-spp and YOLOv3-tiny methods on terrestrial 

videos (top to bottom). 
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Table 1. Average IoU comparison of videos obtained by UAV and terrestrial methods  

for IoU ≥ 0.5. 

Methods Average IoU UAV Terrestrial 

YOLOv3 83,70% 79,52% 87,89% 

YOLOv3-spp  81,21% 88,56% 

YOLOv3-tiny - - 78,40% 

 

Table 2. Precision comparison of videos obtained by UAV and terrestrial methods. 

Methods Precision UAV Terrestrial 

YOLOv3 70,30% 60,25% 80,36% 

YOLOv3-spp 72,02% 63,53% 80,49% 

YOLOv3-tiny - - 60,78% 

 
It is seen that our study has high accuracy values compared to other studies with 

car detection with YOLO algorithms. For the purpose of comparison, studies aiming to 

detect objects over video or in real time were selected. Our study has produced 

successful results in vehicle detection from both aerial and terrestrial video images 

(Table 3). Although lower precision is obtained in aerial video, 80.49% precision value 

was obtained in terrestrial video. 

 
Table 3: Precision comparison of videos obtained by UAV and terrestrial methods. 

Study Precision Average IoU 

Song et al. (2019) 86.46% 71.32% 

Putra et al. (2018) 55.3% - 

Corovic et al. (2018) 63.00% 46.60% 

Our Study 72,02% %84,88 

5. Conclusion 
 

In both model comparisons, both models yielded results in terms of model estimation 

and accuracy factor, and it was found to be more suitable with high performance on 

terrestrial videos. Due to its structure, YOLO algorithm is suitable for real-time vehicle 

detection. With the data set suitable for the targeted study, successful determinations can 

be made on the vehicles in UAV images.  To increase the accuracy factor, training and 

verification procedures are important in the data set suitable for the data used as input. 

With the data set to be used, more successful detections can be realized in parallel with 

the targeted study purpose. However, with stronger training, success rates will increase 

confidence in deep learning methods. 
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