
Baltic J. Modern Computing, Vol. 8 (2020), No. 3, 444-460

https://doi.org/10.22364/bjmc.2020.8.3.04

Ontology Export Patterns in OWLGrEd Editor

Jūlija OVČIŅŅIKOVA

Institute of Mathematics and Computer Science, University of Latvia

Raina blvd. 29, Riga, LV-1459, Latvia

julija.ovcinnikova@lumii.lv

Abstract. The OWLGrEd ontology editor allows graphical visualization and authoring of OWL

2.0 ontologies using a compact yet intuitive presentation that combines UML class diagram

notation with textual Manchester syntax for expressions. For the full use of the graphical ontology

tool, it is important to be able to export the ontology in one of OWL textual standards. We

describe the OWLGrEd ontology export implementation using patterns that are ascribed to editor

diagram abstract syntax elements. The OWLGrEd export patterns show the relationship between

editor visual constructions and ontology textual form elements. The pattern-based method allows a

tool end-user to define a custom field semantics in OWLGrEd extensions, and it can be

generalized also for the model-to-text transformation within other similarly structured tools.

Keywords: OWL, OWLGrEd, ontology export patterns

1. Introduction

OWL 2 (Motik et al., 2012) is a major logic-based open-world knowledge representation

language for the Semantic web. The presentation of OWL ontology in a comprehensible

form is essential for both the ontology developers and ontology users. A number of

approaches and tools have been developed to achieve better ontology comprehensibility

by presenting the ontology graphically, including OWLViz (WEB, i), VOWL (Lohmann

et al., 2016), OntoDia (Mouromtsev et al., 2015), ODM (WEB, h), TopBraid Composer

(WEB, l), RDF visual graph editor (Chis-Ratiu and Buchmann, 2018) and OWLGrEd

(Barzdins et al., 2010c). The benefit of the graphical presentation is that the concepts

that are related in the ontology are also visualized together. The article (Dudás et al.,

2018) has carried out a broad study on methods and tools for graphical ontology

representation.

OWLGrEd is an editor where one can edit OWL 2 ontologies in a visual

environment. OWLGrEd combines UML class diagram notation and textual OWL

Manchester syntax (Horridge and Peter 2012) for expressions that may occur in ontology

definitions. This type of representation ensures that visually related objects are displayed

together. So, object properties are connected to the property domain and range classes

and data properties are represented as their domain class attributes.

For graphical ontology representation tool such as OWLGrEd, it is important to be

able to use the ontology defined therein in other tools as e.g. Protégé (WEB, j), allowing,

for instance, the ontology inference by the means of the available reasoners as HermiT

https://doi.org/10.22364/bjmc.2020.8.3.04
mailto:julija.ovcinnikova
mailto:julija.ovcinnikova

 Ontology Export Patterns in OWLGrEd Editor 445

(Glimm et al., 2014), Pellet (Sirin et al., 2007) or FaCT++ (Tsarkov and Horrocks,

2006). A variety of other systems, including e.g. a knowledge-based framework OBIS

(Zviedris et. al., 2013; Cerans and Romane, 2015) or visual query tool ViziQuer/web

(Cerans et al., 2018) use ontology definitions as their input data. For an ontology created

in a visual editor to be used elsewhere, an exporter that converts the graphical syntax to

some OWL textual syntax is needed.

The goals of this article are: (i) to demonstrate a model-to-text transformation

method allowing for modular and extensible OWLGrEd ontology diagram export into

textual form; (ii) to show a grammar-based textual mapping language capable of

defining correspondence between the graphical presentation of ontology constructs

within OWLGrEd editor and their representation in the textual OWL Functional syntax

(Motik et al., 2012) form.

The OWLGrEd ontology export is implemented using patterns that are ascribed to

graphical abstract syntax elements.

The OWLGrEd tool graphical abstract syntax that is based on the nodes, edges and

fields, and OWL ontology axioms in OWL Functional syntax have very different

structures. A pattern-based language is one of the methods how to connect this

structures. The patterns allow in a natural way to get together the model elements with a

static text.

A pattern-based exporter allows to achieve a modular definition of ontology diagram

semantics, by linking each ontology axiom to one basic construction in the graphical

diagram to which this axiom is directly ascribed (the axiom may use also information

from other locations in the graph, this information is gathered by means of path

expressions relative to the axiom ascription point).

The pattern-based approach described in this article is also used in OWLGrEd

extension definition (Cerans et al., 2013; Cerans et al., 2019), where the person that

configures the extension (the OWLGrEd tool developers, or any other person) can write

an extension field semantics definition in the language described here.

The approach developed here can be also used to translate to the textual

representation models created in another graphical syntax within the GrTP/TDA

modelling tool building platform (Barzdins et al., 2007) or a conceptually similar

platform as ajoo (Sprogis, 2016). For instance, a visual notation for SHACL (Knublauch

and Kontokostas, 2017) language for validating RDF graphs could be implemented

either in GrTP/TDA or ajoo platform and the pattern-based export approach also could

be applied there.

The pattern language has a simple interpreter that handles each of the constructions

individually. The chosen pattern-based architecture of the exporter is expected to allow it

to be transferred from its current implementation in Lua programing language (WEB, k)

with lQuery library (Liepins, 2012) for data model support to another programming

environment (such as e.g. JavaScript (WEB, d) with jQuery (WEB, f)).

The method of pattern-driven export described in this article can be alternatively

implemented in frameworks such as Spoofax (Kats and Visser 2010) and Xtext (Voelter,

2006) that are intended for domain specific language development. This paper

demonstrates the possibility and the involved structures for using the grammar-based

mapping definition principles in practice without invoking a general-purpose framework

and staying with the language means that are integrated within OWLGrEd technological

environment.

446 Ovčiņņikova

The OWLGrEd editor export implementation is a typical Model-to-text solution.

There are existing Model-to-text languages and tools such as Acceleo Query Language

(AQL) (WEB, a), Epsilon Generation Language (WEB, b), Xpand (WEB, m), JET

(WEB, e), MOFScript (WEB, g). Our Model-to-text transformation works directly

within the environment OWLGrEd editor is implemented in. It can also serve as

illustration for the constructs needed for the transformation in a practical example.

The OWLGrEd export pattern notation has been announced in (Ovcinnikova and

Cerans, 2016); it has not been explained in detail until this paper.

In the rest of the paper Section 2 reviews the OWLGrEd ontology editor together

with its concrete and abstract syntax; Section 3 describes OWLGrEd editor export

process and pattern language; Section 4 describes OWLGrEd extensions and their

export, then Section 5 concludes the paper.

2. OWLGrEd Editor Syntax

OWLGrEd
1
 provides a complete graphical notation for OWL 2, based on UML class

diagrams. It visualizes OWL classes as UML classes, data properties as class attributes,

object properties as associations, individuals as objects, cardinality restrictions on

association domain class as UML cardinalities, etc. We enrich the UML class diagrams

with the new extension notations, e.g. (cf. (Barzdins et al., 2010a; Barzdins et al.,

2010c)) to provide visual notations for OWL constructs that do not have corresponding

UML counterparts:

 fields in classes for equivalent class, superclass and disjoint class expressions

written in Manchester OWL syntax (Horridge and Peter 2012);

 fields in associations and attributes for equivalent, disjoint and super properties

and fields for property characteristics, e.g., functional, transitive, etc.;

 connectors (as lines) for visualizing binary disjoint, equivalent, etc. axioms;

 boxes with connectors for n-ary disjoint, equivalent, etc. axioms;

 connectors (lines) for visualizing object property restrictions some, only, exactly,

as well as cardinality restrictions.

Fig. 1. A simple mini-University ontology in OWLGrEd

Figure 1 illustrates some basic OWLGrEd constructs of simple mini-University

ontology. The notation is explained in more detail in (Barzdins et al., 2010a). The same

ontology in OWL Functional syntax is can be found in Appendix 1.

1 http://owlgred.lumii.lv/

Student
studentName:string
studentNumber:string

Person
personID:sting
personName:string

Teacher
<Assistant or Associate
_Professor or Professor
teacherName:string
salary:integer Assistant

Professor

{disjoint}

Course
courseName:string
courseCredits:integer
courseCade:string

Optional_Course

Mandatory_Course

{disjoint} {complete}

Associate_Professor

=Student or Teacher

John:Professor

isTaughtBy only

<<disjoint>>

teaches {<relates} {<>takes}

isTaughtBy

takes {<relates} {<>teaches}isTakenBy

relates

 Ontology Export Patterns in OWLGrEd Editor 447

OWLGrEd provides option to specify class expressions in compact textual form

rather than using separate graphical element for each logical item within a class

expression. Expression can optionally be shown as an anonymous class (e.g. Student or

Teacher in Figure 1). An anonymous class is also used as a base for property

domain/range specification, if this domain/range is not a named class.

The OWLGrEd tool allows both for ontology authoring (with option to save the

ontology in a standard textual format) and ontology visualization that includes

automated ontology diagram formation and layouting step, followed by optional manual

diagram fine tuning to obtain the highest quality rendering of the ontology.

Fig. 2. OWLGrEd abstract syntax metamodel (fragment)

OWLGrEd editor is implemented in the GrTP platform (Barzdins et al., 2007). The

platform hosts both a visual diagramming engine (Barzdins et al., 2009) and a model

repository with a model transformation environment for holding both the editor (e.g.

OWLGrEd) configuration and the ontology diagram abstract syntax structure. An

essential repository structure fragment for the OWLGrEd editor is shown in Figure 2.

OWLGrEd diagram visual elements correspond to the classes Node and Edge, together

with Compartment class that corresponds to the text fields placed in nodes and attached

to edges. On the configuration side, NodeType and EdgeType classes correspond to the

types of nodes and edges that are allowed in diagrams of the respective type. Every

element type has an ordered collection of CompartType class instances attached to it.

These instances correspond to the list of compartment types of the diagram elements of

this type. Each compartment type may consist of one or several sub-compartment types.

Element and compartment types have Tag class linked to them. OWLGrEd export

patterns for the specific element or compartment types are stored in the Tag class

instances. The full tool platform metamodel is best explained in detail in (Barzdins et al.,

2010b).

Figure 3 illustrates OWL class Person definition in OWLGrEd visual syntax, and the

corresponding abstract syntax structure. The Person class box is represented in the

OWLGrEd abstract structure as Node instance with NodeType equals to “Class”. The

Node instance has one compartment, with compartment type “Name”, containing class

448 Ovčiņņikova

name. Compartment type “Name” has Tag class instance, attached to it. This Tag

instance contains export pattern for class declaration (export patterns are explained in

Section 3). Name compartment has two sub-compartments with types “Name” and

“Namespace”, as well.

Fig. 3. OWLGrEd concrete and abstract syntax structures for a named class element (Person)

Another, wider OWLGrEd syntax example can be found in the Appendix 2.

Full compartment type structure for the class element is in the Appendix 3.

There are similarly organized structures for other visual OWLGrEd diagram

elements, as well.

3. Ontology export process and patterns

Graphical ontology diagram translation into the textual format, includes rendering of the

graphical ontology diagram, from Figure 1, into OWLGrEd abstract syntax (performed

while editing the diagram) corresponding to Figure 2 and explicit abstract syntax

translation into the text. In this section the way, how the abstract syntax translation into

the text is realized in the OWLGrEd tool, is described.

Fig. 4. Export patterns top-level structure

:Node

:Compartment
value = " "
input = " "

:NodeType
id = "Class"

:CompartType
id = "Name"

:CompartType
id = "Name"

:CompartType
id = "Namespace"

:Tag
key = "ExportAxiom"
value = "Declaration(Class($getUri(/Name /Namespace)))"

Person

:Compartment
value = "Person"
input = "Person"

:Compartment
value = "Person"
input = "Person"

elemType

compartType

parentCompartType

subCompartType

subCompartType

type

tag

element elemType

compartment compartType

compartment compartType

element

compartment
compartment compartType

subCompartment

parentCompartment

subCompartment

Expression

aspect
aspectName:string

functionCall
functionName

structured

Expression
axiom

Fragment

condition optional

Block
mandatory

Block

path

calls

*
uses

*

child

1..*

child 1..*child 1..*

 Ontology Export Patterns in OWLGrEd Editor 449

To ensure the OWLGrEd ontology export into OWL 2 syntax, an export pattern

language and its parser was created. The parser translates the export patterns into OWL 2

Functional syntax that can be later transformed into any popular OWL 2 syntax using

OWL API (Horridge and Bechhofer, 2011). As a result of the mini-University ontology

diagram, shown in Figure 1, export OWL Functional syntax representation of the

Appendix 1 is obtained.

The patterns are ascribed as Tag class instances to the type elements (cf. Figure 2, 3)

and are evaluated in the context of the respective data element.

Each element or compartment type in OWLGrEd editor that represents an OWL 2

axiom has information about defined export patterns stored in Tag instance attached to it.

OWLGrEd exporter walks through all diagram elements and compartments, that

corresponding type has the export tag connected to it, parses the export pattern, and,

using the parsing result and ontology diagram data, generates the OWL Functional

syntax axiom.

Figure 4 illustrates OWLGrEd export pattern top-level structure.

OWL export pattern consists of the following structural constructions:

 Text fragment construction – the part of OWL Functional syntax axiom text,

such as axiom name. In the export pattern language these expressions are written

in plain text.

 Structured Expression construction – starts with Text fragment (axiom name),

followed by the list of expressions. Can be used e.g. as top-level expression

constructions for the OWL Functional syntax axiom.

 Path expression construction – defines the path from the current location in the

type structure to the required data. Can be used either directly (the result will be

the compartment or the compartment set located in the given path) or as path

before function or condition construction (function/condition construction will

calculate the result from the location the path is pointing to). Each path element

construction consists of “/” symbol and the sub-compartment type name. The two

dots represent navigation to the parent level in the compartment type structure.

 Function construction – retrieves data from repository, calculates and returns

axiom fragment (or textual value that can be used otherwise). Function

construction starts with “$” symbol, followed by the function name and optional

function arguments (path expressions) in brackets.

 Condition construction – checks, whether the axiom or axiom fragment can be

applied based on the given data. Condition construction is included in square

brackets. Condition may consist of several OR condition parts separated by “||”

where each OR condition part consists of a first argument, an operator and a

second argument. Each argument can be a path expression, a function or a

constant value such as a number or a string. Several conditions can be followed

by each other. In this case, all conditions must be true for the axiom or axiom

fragment to be generated.

 Optional construction – defines an axiom fragment that is optional in a given

axiom. Optional construction starts with “?” symbol, followed by optional axiom

definition part in brackets. Optional construction block consists of one or several

expressions. Expression may be any export pattern language top-level structure

(cf. Figure 4.).

 Mandatory construction – defines an axiom fragment that is mandatory in the

axiom. Mandatory expression starts with “!” symbol, followed by several

450 Ovčiņņikova

optional constructions in brackets, where exactly one of the optional

constructions is required.

The OWLGrEd export pattern example with highlighted pattern constructions, is

shown in Figure 5. Each element or compartment type may have more than one export

pattern. If at least one condition or the mandatory construction in a pattern is not

fulfilled, the pattern will not generate the OWL axiom.

Fig. 5. Export pattern structure example

Important part of OWLGrEd export pattern language are functions, used for

retrieving and transforming the OWLGrEd diagram data into OWL axiom fragment.

The classification and description of the functions used in the ontology export pattern

definition, is given in the following list:

Use context information of the entire diagram (e.g. full namespace URIs, diagram

class name list, etc.):

 getUri(compartment Name, compartment Namespace). Returns ontology

element URI for the given Name and optional Namespace compartments. If

Namespace compartment is not specified, the ontology local namespace is used.

If both compartments are not specified, the current context compartment is used

as Name argument.

- Input Examples: $getUri(/Name /Namespace), $getUri(/Expression),

$getUri

- Output examples: :Student, :studentName, foaf:Person

 getRoleExpr. Returns association role URI or ObjectInverseOf axiom with

inverse role expression. The function is always called from the association

compartment context. From the current compartment it finds the association Role

compartment by going up in the compartment tree structure. Then from the Role

compartment the function goes down to the Name compartment and generates the

association role URI. If there is no name present, the function finds in the

compartment structure the inverse role of the current role, then its Name

 Ontology Export Patterns in OWLGrEd Editor 451

compartment and generates the ObjectInverseOf axiom with inverse role

expression.

- Input Examples: $getRoleExpr

- Output examples: :takes, ObjectInverseOf(:isTakenBy)

 getAnnotationProperty(compartment AnnotationType, compartment

Namespace). Returns AnnotationProperty URI. Function, from the current

annotation compartment context, finds AnnotationType and Namespace

compartments by following the given paths and generates the AnnotationProperty

URI.

- Input Examples: $getAnnotationProperty(/AnnotationType /Namespace)

- Output examples: rdfs:comment, owlgred:Container

Some other functions use context information of the entire diagram, as well. There

are listed in other function classification categories, by their main purposes. These

functions are: getFSExpression, getClassExpr, getObjectUri, getHasKeyProperties,

getAttributeKind, getTypeExpression, getFSDataTypeRestriction.

Perform a search for another structural element (by a specified path, condition):

 getClassExpr(element Class). Returns a class expression for the given class

element. The function can be called without arguments from a class element or its

compartment context, or it can be called from explicitly specified (e.g. by a path

expression) class element or a class element set. For each class element found,

the function goes down to its Name compartment and generates the class URI. If

the class is anonymous, i.e. there is no class name, (cf. class Student or Teacher

in Figure 1), the function goes down in the compartment structure into the first

EquivalentClass compartment and generates the axiom fragment (Barzdins et al.,

2010c) from it. The decision, if a class is named or anonymous, and the class

expression lookup are implemented within the function.

- Input Examples: $getClassExpr, $getClassExpr(/eEnd/start[$count > 1])

- Output examples: :Student, ObjectUnionOf(:Student :Teacher)

 getObjectUri(element Object). Returns an object URI for the given element. The

function can be called without arguments from the current object element or its

compartment context, or it can be called from explicitly specified (e.g. by a path

expression) element or element set. For each object element found, the function

goes down to the Title compartment, then down to the Name compartment and

generates the object URI.

- Input Examples: $getObjectUri, $getObjectUri(/eEnd/start)

- Output examples: :Dave

 subject. Provides the compartment context support URI by calling the

appropriate of functions: getUri, getClassExpr, getRoleExpr, getObjectUri.

Function is used in the User Fields extension (Cerans et al. 2013) for the

semantic pattern definition.

Perform a syntax transformation:

 getFSExpression(compartment Expression). Returns OWL Functional syntax

fragment from the compartment containing expression written in OWL

Manchester syntax. The function can be called without arguments from the

current compartment context, or it can be called from an explicitly specified (e.g.

by a path expression) compartment.

452 Ovčiņņikova

- Input Examples: $getFSExpression, $getFSExpression(/Expression)

- Output examples: :Assistant, ObjectUnionOf(:Assistant

:Associate_Professor :Professor), DataMaxCardinality(1 :courseName

xsd:string)

 getTypeExpression(compartment Type, compartment Namespace). Returns

class attribute type (a data type name for data properties and a class name for

object properties) in OWL Functional syntax. The function if called from an

attribute compartment context, generates the type expression from its Type and

Namespace sub-compartments, or the arguments can be specified explicitly. The

function uses information from the entire ontology property and data type sets.

- Input Examples: $getTypeExpression(/Type /Namespace)

- Output examples: xsd:string, :stringID

 getFSDataTypeRestriction. Returns DataTypeRestriction axiom fragment from

the current data type compartment that contains the expression written in OWL

Manchester syntax.

- Input Examples: $getFSDataTypeRestriction

- Output examples: xsd:string xsd:pattern "[0-9]*"

Aggregate information from multiple structural elements:

 getHasKeyProperties(string PropertyKind). Returns class HasKey expressions

for the object or data properties. Function is always called from the current Key

compartment context. The function receives input parameter that can be

'ObjectProperty' or 'DataProperty', it uses the entire ontology Object or Data

property set.

- Input Examples: $getHasKeyProperties('ObjectProperty'),

$getHasKeyProperties('DataProperty')

- Output examples: courseName, ObjectInverseOf(:teaches) :enrolled

Perform selection of certain types of information:

 getMultiplicity(string MultiplicityType). Returns cardinality fragment from the

current multiplicity compartment context.

- Input Examples: $getMultiplicity(‘Exact’), $getMultiplicity(‘Min’)

- Output examples: 0, 1

Get supporting information:

 getAttributeKind(compartment Type, compartment isObjectAttribute). Checks,

if the given class attribute is object or data property. Function is similar to the

getTypeExpression function, just instead of calculating the type expression, it

returns class attribute kind. Function returns a string expression with value

'ObjectProperty' or 'DataProperty' telling that the attribute is an object property or

a data property within the ontology.

- Input Examples: $getAttributeType(/Type /isObjectAttribute),

$getAttributeType(/../Type/Type /../isObjectAttribute)

- Output examples: DataProperty, ObjectProperty

 value(compartment Value). Returns a compartment value. The function can be

called without arguments from the current compartment context, or it can be

called from an explicitly specified (e.g. by a path expression) compartment.

- Input Examples: $value, $value(/ValueLanguage/Language)

 Ontology Export Patterns in OWLGrEd Editor 453

- Output examples: Data type for IDValue, Assistant or Associate_Professor

or Professor

 elemType. Returns an element type of the current context element.

 count. Returns instance count of the given element set.

 getContainer. Returns the name of the container where the current element is

located.

 isURI. Checks, if the compartment value is URI. Used for Annotation generation.

 isEmpty. Checks, if the compartment exists.

The export pattern language functions uses an information from the so-called aspects

– the lists of the different sorts of the ontology information.

 Object property list – the list of all object properties in the diagram.

 Object data list – the list of all data properties in the diagram.

 Class list – the list of all classes in the diagram.

 Data type list – the list of all data type in the diagram.

 Annotation prefixes definition – the predefined list of the annotation prefixes.

 Ontology prefixes definition – the list of all prefixes in the diagram.

 Built-in Datatype prefixes definition – the predefined list of the data type

prefixes.

Fig. 6. Export pattern functions and aspects interconnection

Figure 6 shows interconnection of the export pattern functions and aspects. For

example, to translate an expression from the OWL Manchester syntax into functional

syntax, function getFSExpression uses an ontology prefix definitions, a list of object

properties, a list of data types and a built in data type prefixes definitions.

Figure 7 illustrates the generation of the Class declaration axiom. Generation of the

Class declaration axiom starts from the compartment that is connected to the

getUri:functionCall

getRoleExpr:functionCall

getAnnotationProperty:functionCall

getClassExpr:functionCall

getObjectUri:functionCall

getFSExpression:functionCall

getTypeExpression:functionCall

getFSDataTypeRestriction:functionCall

getHasKeyProperties:functionCall

getMultiplicity:
functionCall

getAttributeKind:functionCall

value:
functionCall

elemType:
functionCall

getContainer:
functionCall

count:
functionCall

isEmpty:
functionCall

isURI:
functionCall

Ontology prefixes
definicition:aspectObject property

list:aspect

BuiltIn Datatype
prefixes definition:

aspect

DataType list:
aspect

Annotation prefixes
definition:aspect

Class list:
aspect

subject:functionCall

Data property
list:aspect

uses

uses

uses

uses

uses

uses

uses

uses

uses uses

uses

uses

uses

uses

calls

calls

calls

calls

uses

uses

uses

uses

uses

uses

uses

uses

uses

uses

uses

uses

uses

uses

454 Ovčiņņikova

compartType whose id equal to “Name”. This compartment type has an export pattern,

stored in a related Tag instance. The export pattern for the class declaration is defined as

the following string: “Declaration(Class($getUri(/Name /Namespace)))”.

The first part of the export pattern: “Declaration(Class(” is a text fragment

construction and it will be translated into OWL axiom as it is. The function getUri has

two arguments /Name and /Namespace indicating that from the current Name

compartment we need to go one level down in the compartment tree structure and find

sub-compartments connected to the compartment types whose id are equal to “Name”

and “Namespace” respectively. Then function getUri, based on these two compartment

values, generates the class URI. Since the namespace compartment is empty, the

ontology local namespace is used. The export pattern ends with another text fragment

construction “))”, and the class declaration axiom is completed.

Fig. 7. Export pattern example for class declaration

The described OWL Functional syntax generation patterns using the defined

functions allow to generate from Figure 1 ontology diagram the OWL Functional syntax

text, as shown in Appendix 1.

Since the text generation patterns are defined on the level of the abstract syntax of the

ontology editor, they could be applied also for other notations that are defined on the

basis of GrTP/TDA tool building metamodel. Such notations, besides the OWLGrEd

editor, include e.g. UML Class, Activity, UseCase and StateChart diagrams, as

developed within the GradeTwo tool (WEB, c)

4. OWLGrEd Extensions

The OWLGrEd ontology editor provides an option to its end users to define extensions

to its visual symbol appearance (Cerans et.al., 2013), (Cerans et.al., 2019). The ontology

export pattern language, as described in Section 3, can be used in semantics definition

 Ontology Export Patterns in OWLGrEd Editor 455

for user-defined fields in OWLGrEd editor extensions. The user that configures the

extension, writes the semantics expression herself, using the pattern language described

here.

In general, the editor extensions with symbol fields and graphical effects enhance the

ontology presentation options by introducing domain-specific notations into the ontology

presentation; they are handled by a generic User Fields extension (Cerans et al., 2013)

that is currently part of the default OWLGrEd editor configuration.

The available editor enhancements, supported by the User Fields extension include:

 custom fields, together with their semantics mappings (e.g. “enumerated class”);

 custom visual effects for text and choice fields and symbols dependent on

concrete text or choice field values (e.g. a brown/darker enumerated class color);

 views applying certain visual effects to the entire diagram (e.g. hiding certain

information from the presentation).

Fig. 8. User Fields extension dialog for semantic pattern definition

The user-defined fields are created by filling in instances of a User Fields

configuration model described in (Cerans et al., 2013), including for each field user can

specify the corresponding semantics expression pattern. Figure 8 demonstrates the User

Fields extension dialog for the semantic pattern definition, involving also field semantics

definition within the described pattern language.

Fig. 9. An ontology example with custom user-defined field

Figure 9 shows, an ontology diagram example with the custom user-defined field, as

well as OWL Functional syntax axioms generated from it. A Teacher_Level class has

check-box field “isEnumerated” for enumerated classes that, when checked, attaches the

456 Ovčiņņikova

stereotype <<EnumClass>> to the class symbol and changes its background color to

slightly darker (orange-brown). The user-defined field can be associated with the export

pattern that is translated into this field during the ontology import and that is produced

during the ontology saving in the textual notation. The User Fields extension in the

export uses the same pattern language as the basic OWLGrEd export. For instance, the

stereotype at the Teacher_Level class has the export pattern attached to it:

AnnotationAssertion(owlgred:isEnumerated $subject "true"), and is saved to the:

AnnotationAssertion(owlgred:isEnumerated :Teacher_Level "true") OWL axiom.

5. Conclusions

The article has shown the possibility to create the visual OWLGrEd ontology export into

the textual format by means of a structured export process, split over diagram syntactic

elements.

 For each visual diagram element, the corresponding OWL Functional syntax axiom

text is generated by a simple pattern language, built over a small set of implemented

context lookup, abstract syntax navigation and text transformation primitives. The

principal classes of functions necessary for the transformation have been: use context

information of the entire diagram, perform a search for another structural element,

perform a syntax transformation, aggregate information from multiple structural

elements, perform selection of certain types of information and get supporting

information.

Declarative definitions of the correspondence between the OWLGrEd constructs and

the OWL axioms relevant parts allows any diagram (even if the diagram is not complete)

to be interpreted as an OWL ontology.

The modular architecture of the OWL axiom text exporter is important for further

definition of OWLGrEd extensions that are principal in OWLGrEd practical applications

(cf. (Cerans et al., 2019)). The architecture enables maintaining the OWLGrEd editor, as

well (e.g. by introducing the changes to the configuration structure).

Described pattern-based language can be used outside the OWLGrEd tool, for the

translation of other graphical models, like a possible graphical notation of SHACL

language, if implemented within GrTP or ajoo platform, into the textual form.

The pattern-based structural OWLGrEd export implementation is expected to support

also the envisaged migration of the editor to a more user-friendly web environment: only

the generic language interpreter and the specific function implementations would need to

be migrated from the current Lua/lQuery environment to the JavaScript/jQuery to

achieve the ontology export from the editor in the new environment.

References

Barzdins, J., Barzdins, G., Cerans, K., Liepins, R., Sprogis, A. (2010a). OWLGrEd: a UML Style

Graphical Notation and Editor for OWL 2. In Proc. of OWLED 2010, 2010

Barzdins, J., Cerans, K., Kozlovics, S., Lace, L., Liepins, R., Rencis, E., Sprogis, A., Zarins, A.

(2010b). An MDE-Based Graphical Tool Building Framework. Scientific Papers, University

of Latvia, Vol. 756. Computer Science and Information Technologies. Riga, Latvia, 2010,

pp. 121–138.

 Ontology Export Patterns in OWLGrEd Editor 457

Barzdins, J., Cerans, K., Kozlovics, S., Rencis, E., Zarins, A. (2009). A Graph Diagram Engine for

the Transformation-Driven Architecture. In Proc. of Workshop on Model Driven

Development of Advanced User Interfaces (IUI 2009). Florida, USA.

Barzdins, J., Cerans, K., Liepins, R., Sprogis, A. (2010c). UML Style Graphical Notation and

Editor for OWL 2. In Proc. of BIR’2010, LNBIP, Springer 2010, Vol. 64, p. 102-113.

Barzdins, J., Zarins, A., Cerans, K., Kalnins, A., Rencis, E., Lace, L., Liepins R., Sprogis, A.

(2007). GrTP: Transformation Based Graphical Tool Building framework, In Proc. of

MoDELS 2007 Workshop on Model Driven Development of Advanced User Interfaces;

Nashville, TN; USA.

Cerans, K., Romane, A. (2015). OBIS: Ontology-Based Information System Framework. CAiSE

Forum, CEUR Workshop Proceedings, Vol.1367, pp.65-72

Cerans, K., Ovcinnikova, J., Liepins, R., Grasmanis, M. (2019). Extensible Visualizations of

Ontologies in OWLGrEd. ESWC, 2-6 June, Portorož, Slovenia

Cerans, K., Ovcinnikova, J., Liepins, R., Sprogis, A. (2013). Advanced OWL 2.0 Ontology

Visualization in OWLGrEd // Caplinskas, A., Dzemyda, G., Lupeikiene, A., Vasilecas, O.

(eds.) Databases and Information Systems VII, IOS Press, Frontiers in Artificial Intelligence

and Applications, Vol. 249, pp.41-54, 2013

Cerans, K., Sostaks, A., Bojars, U., Barzdins, J., Ovcinnikova, J., Lace, L., Grasmanis, M.,

Sprogis, A. (2018). ViziQuer: A Visual Notation for RDF Data Analysis Queries. MTSR,

Metadata and Semantic Research, Springer Verlag CCIS Series, Vol. 846, pp. 50-62.

Chis-Ratiu, A., Buchmann, R.A. (2018). Design and Implementation of a Diagrammatic Tool for

Creating RDF graphs. PrOse@PoEM.

Dudás, M., Lohmann, S., Svátek, V., Pavlov, D. (2018). Ontology visualization methods and tools:

a survey of the state of the art. Knowledge Eng. Review, 33, e10.

Glimm, B., Horrocks, I., Motik, B., Stoilos, G., Wang, Z. (2014). HermiT: An OWL 2 Reasoner.

Journal of Automated Reasoning, 53, 245-269.

Horridge, M., Bechhofer, S. (2011). The OWL API: A Java API for OWL ontologies. Semantic

Web, 2, 11-21.

Horridge, M., Peter, F. (2012). OWL 2 Web Ontology Language Manchester Syntax (Second

Edition).Available at http://www.w3.org/TR/owl2-manchester-syntax/

Kats, L.C., Visser, E. (2010). The spoofax language workbench: rules for declarative specification

of languages and IDEs. // Rinard, M. (eds.), In Proc. of the 25th Annual ACM SIGPLAN

Conference on Object-Oriented Programming, Systems, Languages, and Applications,

ACM.

Knublauch, H., Kontokostas, D. (2017). Shapes Constraint Language (SHACL). Available at
https://www.w3.org/TR/shacl/

Liepins, R. (2012). Library for model querying: IQuery. In Proc. of 12th Workshop on OCL and

Textual Modeling, OCL 2012 - Being Part of the ACM/IEEE 15th International Conference

on Model Driven Engineering Languages and Systems, MODELS 2012; Innsbruck; Austria.

Lohmann, S., Negru, S., Haag F., Ertl, T. (2016). Visualizing Ontologies with VOWL. Semantic

Web 7(4), 399-419.

Motik, B., Patel-Schneider, P.F., Parsia, B. (2012). OWL 2 Web Ontology Language Structural

Specification and Functional-Style Syntax. Available at
https://www.w3.org/TR/owl2-syntax/

Mouromtsev, D., Pavlov, D., Emelyanov, Y., Morozov, A., Razdyakonov, D., Galkin, M. (2015).

The Simple Web-based Tool for Visualization and Sharing of Semantic Data and

Ontologies. International Semantic Web Conference.

Ovcinnikova, J., Cerans, K. (2016). Advanced UML Style Visualization of OWL Ontologies. In

Proc. of VOILA 2016. CEUR, Vol. 1704, CEUR-WS.org, 2016, pp.136-142.

Sirin, E., Parsia, B., Grau, B.C., Kalyanpur, A., Katz, Y. (2007). Pellet: A practical OWL-DL

reasoner. J. Web Semant., 5, 51-53.

http://www.w3.org/TR/owl2-manchester-syntax/
https://www.w3.org/TR/shacl/
https://www.w3.org/TR/owl2-syntax/

458 Ovčiņņikova

Sprogis. A. (2016). ajoo: WEB Based Framework for Domain Specific Modeling Tools. //

Frontiers of AI and Applications, Vol. 291, Databases and Information Systems IX, IOS

Press, pp. 115-126, Available at
http://ebooks.iospress.com/volumearticle/45704

Tsarkov, D., Horrocks, I. (2006). FaCT++ Description Logic Reasoner: System Description.

IJCAR, Lecture Notes in Computer Science, Vol. 4130. Springer, Berlin, Heidelberg.

Voelter, M. (2006). oAW xText: A framework for textual DSLs. Modeling Symposium at Eclipse

Summit 2006.

Zviedris, M., Romane, A., Barzdins, G., Cerans, K. (2013). Ontology-Based Information System.

In JIST. Springer Lecture Notes in Computer Science, Vol.8388, pp.33-47 (2013).

WEB (a). Acceleo Query Language (AQL).
 https://www.eclipse.org/acceleo/documentation/

WEB (b). Epsilon Generation Language.
https://www.eclipse.org/epsilon/doc/book/

WEB (c). GradeTwo Tool. http://gradetwo.lumii.lv/

WEB (d). JavaScript. https://www.javascript.com/

WEB (e). JET.
https://www.vogella.com/tutorials/EclipseJET/article.html

WEB (f). JQuery. https://jquery.com/

WEB (g). MOFScript. https://marketplace.eclipse.org/content/mofscript-
model-transformation-tool

WEB (h). ODM UML profile for OWL. http://www.omg.org/spec/ODM/1.0/PDF/

WEB (i). OWLViz. http://www.co-ode.org/downloads/owlviz/

WEB (j). Protégé. https://protege.stanford.edu/

WEB (k). The Programming Language Lua. https://www.lua.org/

WEB (l). TopBraid Composer. http://www.topquadrant.com/tools/modeling-
topbraid-composer-standard-edition/

WEB (m). Xpand. https://www.eclipse.org/modeling/m2t/?project=xpand

Received June 11, 2020, revised September 3, 2020, accepted September 5, 2020

http://ebooks.iospress.com/volumearticle/45704
https://www.eclipse.org/acceleo/documentation/
https://www.eclipse.org/epsilon/doc/book/
http://gradetwo.lumii.lv/
https://www.javascript.com/
https://www.vogella.com/tutorials/EclipseJET/article.html
https://jquery.com/
https://marketplace.eclipse.org/content/mofscript-model-transformation-tool
https://marketplace.eclipse.org/content/mofscript-model-transformation-tool
http://www.omg.org/spec/ODM/1.0/PDF/
http://www.co-ode.org/downloads/owlviz/
https://protege.stanford.edu/
https://www.lua.org/
http://www.topquadrant.com/tools/modeling-topbraid-composer-standard-edition/
http://www.topquadrant.com/tools/modeling-topbraid-composer-standard-edition/
https://www.eclipse.org/modeling/m2t/?project=xpand

 Ontology Export Patterns in OWLGrEd Editor 459

Appendix 1.

A mini-University ontology in OWL Functional syntax

460 Ovčiņņikova

Appendix 2. OWLGrEd abstract syntax example

Appendix 3. OWLGrEd class node type structure

CourseStudent

:Node

:Node

:Edge

:Compartment
value = "Course"
input = "Course"

:Compartment
value = " "
input = " "

:Compartment
value = "takes"
input = "takes"

:Compartment
value = "takes"
input = "takes"

:Compartment
value = " "
input = " "

:NodeType
id = "Class"

:CompartType
id = "Name"

:EdgeType
id = "Association"

:CompartType
id = "Role"

:CompartType
id = "Name"

:CompartType
id = "Name"

:CompartType
id = "Namespace"

:Tag
key = "ExportAxiom"
value = "..."

:Tag
key = "ExportAxiom"
value = "..."

:Compartment
value = "Student"
input = "Student"

takes

element

compartment

element

compartment

element

compartment

parentCompartment

subCompartment

parentCompartment

subCompartment

subCompartment

start

eStart

eEnd

end

elemType

compartType

start

eStart

parentCompartType

subCompartType

parentCompartType

subCompartType

parentCompartType

subCompartType

subCompartType

type
tag

tag

type

element elemType

compartment compartType

element elemType

compartment compartType

compartment compartType

compartment compartType

compartment compartType

element

elemType

compartment

compartType

