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Abstract. The classic domino exclusion problem consists of finding minimum number d(n) of
dominoes on an nxn chesshoard to prevent placement of another domino. This sequence of
minimum numbers is discussed under A280984 at the On-Line Encyclopedia of Integer
Sequences. With new theoretical insights and a specially designed computer program we were able
to expand the sequence from n =18 to n = 33. New upper bounds of d(n) thought to be sharp have
been obtained. The article also discusses the rectangle-free minimal domino packings. Small
3-dimensional grid squares up to n = 6 have been analysed.
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1. Introduction

During the Covid-19 pandemic, the first author was writing a book on recreational
mathematics. In one chapter, both old and new tasks about matchsticks were collected.
In relation to the number 19, the following task was devised: ”To create a vaccine that
prevents Covid-19 virus from multiplying, it is necessary to colour a minimum number
of unit edges of the 19x19 cell square so that each uncoloured edge has at least one
point of contact with the coloured edge.” As it turned out later this rather difficult task
had far-reaching consequences. Solving this problem for small matchstick squares nxn
the following sequence of minimum numbers was obtained, see Figure 1:
2,3,6,9,12,17, ...

Then, looking at The On-Line Encyclopedia of Integer Sequences (Shepard,
2017), it was understood that this matchstick problem is equivalent to the domino
exclusion problem studied earlier in (Gyarfas et al., 1988). Domino exclusion problem
consists of finding minimum number of dominoes on an nxn board to prevent
placement of another domino, see Figure 2 as a transformation of Figure 1 in domino
terminology.

Figure 1. Minimum number of coloured sticks
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Figure 2. Minimum number of dominoes

A third way to visualize the problem and not to draw unpainted square edges at
all is to use graphs, see Figures 3 — 4.

O O=Q O=0
O=Q O==0 O
O O=O0 O==O0
O=0O O=0 O
O O=OQ O=0O

Figure 3. Non minimal Figure 4. Interpretation
arrangement with 10 sticks by graph

As far as we know, the first book in which one can find the tasks of excluding
shapes (namely, pentominoes by monominoes on a chessboard 8x8) is the Golomb’s
classic book (Golomb, 1994). Exclusion problems in other areas (graph theory, statistical
physics, percolation theory) may have to do with the following concepts: matching,
minimum dominating sets, domination number, square grid graphs, an edge cover,
dimmers, and others (Alanko et al., 2011), (Korte and Vygen, 2018).

The second author developed an efficient algorithm that allowed new progress in
both the domino exclusion problem and its generalizations to n-dimensional grids.

The article uses generally accepted terms in mathematics:

[x]=min{fnez,n>x}, [x]=max{neZ,n<x}

are the so-called ceiling and floor functions of x, respectively.
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2. Grid squares and rectangles

Let [mxn] be a grid rectangle consisting of m rows and n columns of points (dots,
vertices, grid meshes), and let D= D(m,n) be the minimum number of dominoes

(edges isolating grid points) for which a packing exists. A domino packing is an
arrangement of dominoes on a given board (here on a grid rectangle) to prevent
placement of another domino. The following numbers are of particular importance in
future estimates:

d(n):=D(n,n), D,(m,n):= (?-l m,n>2, d,(n):=D,(n,n).

A point is isolated if all its neighbours are connected by edges. Note that minimizing the
number of edges or maximizing the number of isolated points or holes H = H(m, n)
are equivalent problems. Clearly that

H+2D =mn. Q)

2.1. Estimates

Two important theorems are proved in this section. As a consequence of the first
theorem, the following nice estimate is obtained:

D(m, n) 2(?—‘ m, n>2. )

Both old and new (updated) information one can found in (Kagey, 2019): "Fifteen terms
are known, and a few folks have conjectured that

n2

A2808984(n) = {J forn>1. ®)

Walter Trump has just added the terms 19 -33 of the sequence (with
d(19) =122 = |’19 .19/3'|+1 with some examples of optimal solutions and announced an
effective algorithm for finding the optimal solutions. /Jun 14 at 20:30/”

The sequence of the left hand side of (3) here means the numbers d(n), and
since  d(19) = d,(19), the conjecture (3) is generally incorrect. Here, ironically,
numerologists should have known that Covid-19 number breaks for the first time this
beautiful formula. Life is not so simple and we have to look for a new formula.

Such estimates of d(N) are given in (Gyarfas et al., 1988):
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n? n> n
>—1, d <—+—+1.
d(n) {3} (n) 3+12+

2
“If niis large and n=3k £1 then d(n) > % + AN » (Tt is not specified how large).
111

Remark 1. H <D+1 is valid for strings (rectangles with one row or one column).

Equality can only exist if the number of grid points is n=3k +1, see Figure 5 with
H=4and D=3.

O O==O O O==O O O==O O

Figure 5. Domino arrangement withH=D + 1

For rectangles, a stronger estimate H < D can be proved (Theorem 1). The proof

uses the same basic ideas as in the article (Gyarfas et al., 1988) but the presentation is
shorter and quite different.

Theorem 1. H(m, n) <D(m,n), m,n>2.
Proof. Let us use the following notations:
B — set of boundary points of [mxn] rectangle (points in the 1st or last row, or

column)
D, H — the number of dominoes, holes respectively,
Dg, H, — the number of dominoes, holes that are incident (have contact, touch) to B,

D;, H;, j=12,3,4—the number of dominoes, respectively holes incident to the j-th

side of the rectangle, see Figure 6 where
D,=D,=2,D,=D,=2,H,=H,=3 H,=H, =3
T,=D-D;+H,,;-H, Hy=H;, Hi:=H,, j=1234,
T=T+T,+T,+T,.
Such equalities:
D=D;+H-H, ;+T;,j=1234, (4)

follow immediately from the notations, but their essence, salt, is in their geometric
interpretation. Let us interpret (4), e.g. for j = 1. The difference H —H, means the

2+]j

number of holes in the rectangle, except for the last row. Each such hole has a domino
below it. It is important that each hole has its own corresponding domino. T, is the

number of dominoes not yet counted. T, describes (redundant) dominoes exactly above

which there are no holes and which do not belong to D, . Figure 7 shows several domino
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arrangements in the form of tetrominoes I, L, and O which yield T > 0. (Here is a
motivation for choosing the symbol T — tetromino.)

Om=Q u iOmm)  Qum(p
I | ] L J
H4, Dy Hz, D, i i I [Jo___6)
[ o o]
Figure 6. Example of [5x 7] packing Figure 7. Arangements with T >0

Without loss of generality we can assume that H, > H,. Since H, <D, +1 then
(4) immediately yields:
D=D,+H-H,+T,2 H+D,-H,;+T,2H +T, -1.
From here, D>H, if H, <D,. Dueto (1): if H =D+1 then
3D+1=mn = mn=1(mod3).
Thus, it remains to examine only those rectangles for which
T,=0,H;=D;+1 j=1234,H=D+1 mn=1(mod3). (5)

Assume R is the smallest rectangle that satisfies (5). The number of B points is an
even number, so they can be grouped in pairs. Since at least one point in each pair is the
domino endpoint, then H, < D;. If B would contain only dominoes with both endpoints

inside B, then after discarding B we would get a new rectangle smaller than R with
H >D+1 (and since H > D +1 is not possible then H = D +1 ), which contradicts

the assumption. So there is a domino that has only one endpoint in B. Without loss of
generality, we can assume that this is the horizontal domino with one point in the first
column: (i, 1), i #1, n, see Figure 8. Then the points (i +1,1) are holes (otherwise the

condition H, =D, +1 would not be fulfilled), but their adjacent points (i£1, 2) are
endpoints of horizontal dominoes. A vertically placed domino in points (i+1, 2)
formed L-tetromino arrangement (Figure 7) giving T > 0. Since the number of columns
3is not valid and the point (i, 3) is a hole (otherwise T > 0) the points (i, 4) and (i, 5)
are joined by domino. Points (i+1,4) are holes (otherwise T >0). Thus only the

arrangements shown in Figure 9 is permissible. Since the process is not complete in the
column m = 3k, the theorem is proved.
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o o0 O O O 0 0 0 o O
o O O==0 O O Om==® O O==O O
@i, 1) o o O O O O==® O O
o O O==p O O Om=® O O=mO O
Figure 8. Figure 9. Periodic arrangements

Remark 2. With this proof technique, an estimate H <D can also be obtained for
3-dimensional grid rectangles.

Corollary. D(m, n) > D,(m, n), see (2).

. mn mn .
Proof: (H+2D=mn,H<D)=3D>mn= DZ? = Dz[g] because D is an
integer.

Theorem 2. The following estimates are valid:

d(n) <d,(n), n=3k, (6)

-3
d(n)sdo(n)J{nl—sJ, n=3k+1, )
d(n)sdo(n){zilJ, n=3k+2. 8)

Proof
1. The case n = 3k, estimate (6), is trivial in the sense that minimal arrangements
(solutions) also for [m x n] rectangles one can obtain using an elementary pattern shown

in Figure 10. Copies of [mx 3] can be added to each other as many times as needed.

Moreover, it is important that the additive property holds:
D, (m, +m,, 3k) = Dy(m,, 3k) + D, (m,, 3K).
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O O=Q O O==0 O O==0
Om==® O O==Q O | O==O O
O O=Q O O==0 O O==0
O==0 O O==0 O | O==0 O
O O==0 O O==0 | O O==O

Figure 10. Periodic arrangement

2. Case n =23k +1 is the most difficult to prove.
Let us compose the [Nxn] square from elementary blocks: [Lxn] and [4xn]
rectangles, see Figure 11 with n =4, 7, 10.

O O=0 O| |[O O=0 O O=0 O| [O O=O O O==O O O==O0 O
O=Q OO O==Q O O==O O==O| (OmmQ O OQum=O O QO=u=O O=mO
O O==0 O OmO O O==Q O O=0 O O==O0 O O==O0
I Oi O O=0 OI O O=m=O O O==O @)
OEE O=0 O
o !

o O=0 O i o

Q=0 O i
O=0 O O=0 O

QmQ O O=0 O O==O O

I

Figure 11. Elementary blocks for forming squares with n = 3k + 1

It is clear that each such block can be stretched to a length n =3k +1. Suppose we have
x rectangles [1x n] and y rectangles [4xnNn]. Then X +4y =n. There are two types

of [Lx n] rectangles with the following number of coloured edges: " =1 and nLZ,
3 3
respectively. If these two types of rectangles are adjacent and form [2x n] then
p2n) =224t o, ©

The number of coloured edges for [4xn] rectangles is D(4,n) 2{4n—‘. Note that
3

two [4xn] rectangles are not adjacent, because in that case we would not get the
minimal arrangement:

2[@1:%%%@}&%



Domino Exclusion Problem 503

Let's choose the following number of [4x n] rectangles: y = LMJ . The motivation
5

for such a choice is that length 4 is followed by length 1 and we want to use the
maximum number of such rectangles. For example, if n=19, then y=4, and

partition of 19 is as follows: 19=4+1+4+1+4+1+4=4-4+3-1. For simplification
purposes, let us use the following elementary calculations:

{@1_[4(3“1)1_4“2_
311 3 | ’

2
n J{HJ =3k2 +2k +1+L3k_2J :nk =3k? +k.
3 15 15

2a. If all [1x n]rectangles contain K coloured edges, then (since X +4y =n)

2
d(n)sy(4k+2)+xk=kn+2ysﬁ%—I{nl_:J o

2[3k+2J£k+1+{3k_2J. (10)
5 15

The correctness of this inequality can be easily proved by taking k =5j+r and

checking the five values of remainder r.
2b. If all [1x n]rectangles except one contain k coloured edges then, see (9),

d(n) <y(@k +2) + (x—2)k + 2k +1=y(4k + 2) + xk +1,
and instead of (10) we now have the inequality

2{3";13“{3‘(—‘1. (11)

15

This inequality for arbitrary k is not correct at all, for example, k = 3. But here there is a
subtle nuance, namely, the inequality does not have to be checked for all k, but only for
those k for which n =3k + 1 does not fit in the case 2a. Note that only such k values
need to be checked: k =5j +r,where r = 2 or 4. It is easy to prove that the inequality

(11) for both values of r transforms into equality.
3.Case n=3k +2. Let us compose the [nxn] grid square from x rectangles [1x n]

and y rectangles [3x n] with

D(Ln) :”T”, D@3,n) =n.
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See Figure 12 with such elementary rectangles for n = 20. Let's choose the following

number of [1x Nn] rectangles: x =2 + 3[;J .

Since x+3y =n, then

2
d(n) < x(n+1)ijn xn+x+(n X)n _X n_=g+ E +n_:
3 3 3 3 3 3 |7 3
2+n? {kJ n? [3k+2J [J t J
= +H oS | = |+
3 7 3 21 7 21
O OO O OO O OwmO O OO O OwmO O O=mO o)
QOu=® O Q=@ QO QOu=Q QO O==Q O O==Q O O==0 O 1
QO O==0Q QO O==0 O O==0 O O==O O O==Q0 QO O==0 O

EOO—OOO—OOO—OOO—OOHOO—OO
O O=0 O O=Q O O==0 O O==0 O O==0 O O==O
o O==Q O O==O O O=Q QO O==0Q O O==Q O O==0 O

O==OQ O OQO==0 O O==0 O O==0 O O==0 O O==0 O O==0

O O=0 O O==0 O O==0 O O==O0 O O==0 O O==O o
OO O O=O0 O O=Q O O=Q O O==0 O O==0 O i
QO O=0 QO QO==Q O O==0 O O==Q Q O==0 O O==0 O

i00—000—000—000—000—000—00
O O=0 O O=Q O O=0 O O==0 O O==0 O O==O
o O==Q O O==0 O O=0 O O=0 O O==0 O O==0 O

QO==Q O O==0 O O=0Q O O==0Q O O==0 O O==0Q O O==0O

O O=0 O O==0 O O==0 O O==O0 O O==0 O O==O (@]
O=Q O O=0 O O=Q O O=Q O O==0 O O==0 O i
O O=0 O O==Q O O==0 O O=O0 O O==0 O O==0 O

iOO—OOO—OOO—OOO—OOO—OOO—OO
O O=Q O O==Q O O==Q O O==0 O O==0 O O==O0
o Qu=Q O Q== QO O==0Q QO O==0 O O==0 O O==0 O

Figure 12. Minimal arrangement, d(20) = 134
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2.2. Rectangles with D(m, n) = D,(m, n)

We have previously found that the smallest square for which equality (12) does not hold
is [19x19]. In this section we will look for the smallest rectangle for which the

analogue of equality (12), i.e. (13) is no longer valid.

D(n, n) = D,(n,n) =d,(n) = P‘—;] (12)

nm

D(m, n) = Dy(n,m) = [?—‘ (13)

Theorem 3. D(m, n) = {?w for 2<m<13,n>2.

Proof. According to (2) it suffices to show solutions (arrangements) with the specified
number D,(n, m) of dominoes. Such solutions are easy to find for small m. For m = 2,

see Figure 13, and for m = 3k, see the periodic arrangement shown in Figure 10.

O=0 |0 O=Q| O O=O O|(O OO O O==O||O O==O O O==O O
O==Q (|O==O O||(OweQ OO ((O=mO O O=mO O C=mO O O=m=Q O==O

Figure 13. Minimal arrangements for m = 2

The fact that the presented solutions contain the required number of dominoes can be
easily verified using the property:
Do (M, j+3k) =Dy (m, )+ Dy (], 3K)-
Periodically added rectangles is also of use for m =4, and m = 5, see Figure 14.
By repeating [4x 3] and [5x 3] rectangles the required number of times, we can get
[4x j+3Kk], [Gx j+3k],j=1,2,3, ie. all necessary rectangles with m=4 and
m=5.

Iiclo oo
Qu=0Q O iO-OO

Figure 14. Minimal arrangements form=4andm=5
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Now let's use a more advanced idea: in the role of elementary rectangles, let's
take appropriately selected blocks that are periodically added. For m = 13 the minimal
arrangements are shown in Figure 15. The key to the proof is now a periodically
movable string (a block of red edges), which we move by three units to obtain all the
required rectangles. From here, removing the first two rows, we easily get the minimal
arrangements for rectangles with m = 11 rows. Similarly, removing the appropriate
number of rows we will obtain minimal arrangements for the other required values for m
(m=10, 8, and 7). To avoid ambiguity, let us clarify that in the case n = 3k + 5, after
removing the first two rows, the vertical domino is shifted down one unit, and after
removing the first 5 rows, the vertical domino is replaced by a horizontal one. Theorem
is proved.

O O=0C O O=O o 0|0 OO O O=O O
O=O O O=O O o O O O=0 O O==0
oo—ooo—oooojoo—ooo—oo
OO O O==O O O 0|0 O=O O O==O O
O O=O O O=O O O|O=O O O=O O I
OC==O O O=O 0|0 0|0 O=O O O=O0 o
@) O=0 O O O|C=O O O=O O O=mO
OO—OOiOOO Q=0 O O==O O
EO O O=0 OO O O O=0 O O==O
o I OO-OOOIOO-OOO—OO
gOiO-OOOOOO-OOO—OO
EOMOMOOMOO—OO I
O O=0 O O=0 O|O0 0|0 O==O O O==O o

Figure 15. Minimal arrangements for m=13,n=3k+4,n=3k +5

By computer assisted-proof it is stated that [14 x16] is the smallest rectangle for
which the formula (13) is no longer valid. The smallest rectangle of type [mx (m+1)],
for which the formula is not valid, is [16x17]. As for the rectangles
[14 x n], n = 2(mod 3), this formula is again correct, see Figure 16.
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© O==0 O © O=0 O O=0 O O==0 O O==0 O
Q==0 O I Oe=Q O O==Q QO QO==0 O O==0 O I
O O==0 (e] © O=0 O O==0 O O==0 O O==0 o
QO==Q O Q==0O Ou=Q QO O==Q Q QO==Q O O==Q O O==O
O O==0 (e] © O=0 O O==0 O O==0 O O==0 o
Qu==0 O Qe O O==Q QO QO==0 O O==0 O
OO—OOI OO—OOO—OOO—OOO—OOi
O O==0 O O O==Q O O==Q O O==Q O O==0 O
I © O==0 I © O=0 O O==0 O O==0 O O==0
(e] O==0Q O OIO—OOO—OOO—OOO—OO
Q=) O Q==O Oue® O QO==Q QO QO==0 O QO==Q O O==0O
(e] O==0 O o Ow=Q O O=0 O O==0 O O==0 O
O O==0 IOO—OOO—OOO—OOO—O
IOO—OO IOO—OOO—OOO—OOO—OO

Figure 16. Minimal arrangements form =14, n =2 + 3k

Remark 3. Analogous estimates for rectangles can also be obtained by a similar proof
technique (as in Theorem 1). A more complicated estimate is for rectangles whose edge
lengths divided by three give different remainders:

D(m,n) < [?w + minﬂml—?J, {nZ—ZGJ} m=2(mod 3), n=1(mod 3) -

Remark 4. As a further study, we propose the following hypothesis:

|
|

2
—|+L—n_3J, n=3k+1,
15

w|>S

d(n) =

w|>
N

-I{QJ, n=3k+2.
21
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2.3. Rectangle-free packings

In the previous section, the partition of squares in rectangles was crucial to prove
the theorems. Let us now consider the question of the existence of minimal packings
which cannot be divided into smaller rectangles. Such packings will be called rectangle-
free packings (arrangements, solutions). The smallest square for which a rectangle-free
packing exists is the [5x 5] square, the next such squares are [8x8], [10x10], [11x11]

and [14x14], see Figures 17 - 18. For [3k x3k] with k >3 there exist exactly 16

different packings if reflected and rotated solutions were count. But up to symmetry
there are only 3 packings, see Figure 19. No packing is rectangle-free.

With the help of a computer program, it has been found that rectangle-free
packings with d(n) =d,(n) is a rarity in general, the largest square for which such a

solution still exists is [14 x14]. This is an unexpected result, at least for the first time,

because larger squares no longer have this type of solution. For rectangles (unlike
squares) the number of rectangle-free packings with d(m,n)=d,(m,n) is not finite,

see, e.g. Figure 20 obtained from the [5x 5] square repeating the red fragment. The fact
that there is no a rectangle-free packing for [nx n] square does not mean that there is no
a rectangle-free packing for [mx n] rectangle. See Figure 21 as an example.

Developing the idea of periodicity in two directions, we manage to find rectangle-
free packings of squares with d(n) satisfying (7) or (8) for arbitrarily large rectangles,

see Figure 22. So far rectangle-free minimal packings with d(n) =d,(n)+1 are known
forn =19, 22, 23, 26. See Figure 23 for n = 26.

OiO—OOO—OOO—O
OO—OOO—OOEj OEO—OOO—OO
Ou=® O O==Q O o O O==Q O O==O
o O==0 O
o] O==0 O o |© O QO==Q O O==0 O
O O==0
i O O=0 Oii OO—OOO—OOI
o o]
o] Q=0 O QO Q==Q O O==0 O
Quu=
o] O O==0Q | |[©O O==0 O O==0 O @]
O O==0 o]
E QO O==Q O QO==Q Qu= O O==0 O 01
O O==0 O O==0 O O O==0 O O=0 o]
Qu=Q O O==0Q O O==0 o

Figure 17. Rectangle-free packings: d(5) = 9, d(8) = 22, d(10) = 34
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O QO==Q Q== O O==0 O

O QOmu=Q O O==D O

O=0
Qu=0Q O
o] O Q=0
I O==Q O Q=0
iOO—OOO—OO

O O==Q O O==O
O==Q QO O==0 O
QO O==Q O O==D O O==O
Cm=) O Q== QO O==OQ O

509

O O==0 QO O==Q O O==O
O=—Q O O=—0 O O=—0 O
QO O==Q O O==O

0—000—001
QO O==Q O O==0 O

o

!
:

Figure 18. Rectangle-free packings, d(11) = 41, d(14) = 66

O O=0
O==0 O
O Om==O

O O==O
O==0Q O
O O==O

O O=—0
O==0Q O
O O==O

o O=0
O==0Q O
O O==Q

O O==0
Q==0Q O
O O==0

Qu=d O
O Om==0
Qu=(O O

Q=0 O
QO O==0

O==0 O

Q=0 O
O O==0

O==0Q O

Q=0 O
O Om==0Q

O==0Q O

Q==0 O
O O==0

O==0Q O

Q==0 O
Q  O==0

O==0Q O

O==0Q O

O OQ==0
O==0 O
O Q=0

O OQ==O
O==0 O
O O==0

O O==0
O=—0 O
O O==O

O O==OQ
O=0 O
O O==O

O O==O
O=0 0
O O==O

QO QO==O
O==0 O
O O==0

O O=0
Q=0 O
O O==Q

O O==0
O==0Q O
O O==Q

1

Q==0 O

O Q=0

Q=0 O

Q=0 O

O  OQ==O

O=—0 O

Q==0 O

Q Q=0

O==0 O

O Q=0
O==0 O
O Q==O

O O==Q
O==0 O
O O==O

!

Figure 19. Trivial minimal packings, n = 3k
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O Qm=O (0] O O==0 O O==O o
o—ooi o—ooo—ooi
o—ooi O—OOO—OOi
i O==0 O i Q=0 O O==O O
oioo—o OiOO—OOO-O

Figure 20. Rectangle-free minimal packings, m=5, n=2+ 3k

© O=0 O O==0 O

Ly !

O—OOO—OOI

00—001 o]
Quu=( I OO-OI
o o O O==0 O

o
1100—000—0
QO O=0 O O==0 O

!

Figure 21. Rectangle-free packing for [7 x 10]

!

O QO==Q O O==0 O
Om=@Q O O==Q O
O O==0 O O==0

Figure 22. Rectangle-free packing for m = 13 + 3j, n = 7 + 15k
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O O=Q O O=0 O O==0 O O=0 O O=0 O O==0 O O==0 O O=O0
Q=0 O O=0 O O=0 O O=0 O O==0 O O==0 O Q=0 O O==0 O
O QO==Q QO QO==Q QO O==Q Q O==Q QO O==Q QO O==Q Q O==Q (e}
O—OOO—OOO—OOO—OOO—OOO—OOO—OOE
00—000—000—000—000—000—000—001
Q=0 Q0 O=0 O O==0 O O=0 O O=O0 O O==0 O O==0 O

!

QO Ow=Q O O==mD O O=wmO O OwmO O O=mO

QO QOu=Q QO Q== QO O==Q Q O==Q QO OQO==Q QO O==Q Q O==Q
O==Q O O=0Q O O==0 O O=Q O O==0 O O==Q O O==Q O
O O==Q QO Q== QO O==0 QO O==Q QO Q== O O==0 O O==Q
O=0 Q0 O=0 O O==0 O O=0 O O=0 O O==0 O O==0 O
QO QO==Q QO O==Q QO O==Q Q OQO==Q O O==Q QO O==0 QO O==Q
EOO—OOO—OOO—OOO—OOO—OOO—OOE

IOO—O 10—000—000—000—001

!

O Q== O O==Q O O==0 O O==O0 O

o Oo=—=0 O OO0 O OO0 0O O=—0 o

QO O==Q ©Q O==Q O O==Q
Om=) © Q== O O==O O

Qe=Q O O=Q O O==Q O O==0Q O O==0
O O=C O O==Q O O==0 QO O==Q O O==0 O

Q== Q QO==0 O O==0 O O==0 QO O==0 O O==0O O
QO Q== O O==Q QO O==OQ O O==Q O Q= O O==O

100—000—000—000—000—0
EDO—OOO—OOO—OOO—OOO—O
o Q==Q O O=0 O O=0 O O==Q O O==0 O O==0
OIOO-ODO-OOO-OOO-OOO-OO
o]

E 100—000—000—000—000—0
o

O==Q O O==0Q O O==0 O O==0 O O==0 O
0O O=0 O O=0 O O==0 O O=0 O O==0 O O==0

O O==O O O==O O O==0 O

OQe=Q QO O==0 O O==0 O O==0 O O==0 O O==0 O

QO QOm=Q O O==Q O Q== QO O==O O

O==Q O O=Q O O==0Q O O==0 O O==0 O O==Q O O==O0

O O==Q QO O==Q QO O==Q O O==OQ O
O QO Ow=O Q OmmQ O O==Q O
O O==Q O O==0 O O==0 O O==0
O==Q QO O==0 O O==0 O O==0 O

QOu=Q O O==0 O O==Q O O==Q O O==0 O O==0 O O==0 O

Figure 23. Rectangle-free packing, d(26) = 227

3. Basic information for algorithm elaboration

In this section we use the following notations:

D,,Dgr— number of dominoes which cover at least one cell in the left (the first),
respectively right (the last) column,

H., Hr — number of holes in the left respectively right column.

T, Tr— number of dominoes which touch only dominoes with their left, respectively
right edge. (The contact line is one unit for horizontal dominoes and 2 units
for vertical dominoes.)
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M, =D, +1-H_, Mg =Dg +1-H; —number of missing holes

(H =D, +1LHy <Dz +1 = M 20,M, 20)

B =T, +T; + M+ My—number of bad domino constellations,
2(D-H)=T,+T,+D, —H_+D; —H, (14)
2(D+1-H)=T, +T,+M +M,=B. (15)

Equality (14) with precision to the notations is equivalent to equality (7) from (Gyarfas

et al., 1988). Equality (15) immediately follows from (14). Since mn=2D+ H, then

H =mn-2D and
2(D+1-H)=2(8D+1-mn)=6D+2(1-mn) =

6D =2(mn-1)+B. (16)
Equality (16) is very important. It shows that by minimizing B we minimize D.
With a backtracking algorithm we enumerate the domino packings of a [mx n]

rectangle with a given number D of dominoes. We do this by placing dominoes row by
row from left to right. In general there are 3 possibilities to continue in a grid cell:

empty, horizontal or vertical domino. Therefore the number of paths is greater than
3mn/2

high.

The new approach considers the known number B of bad domino constellations. As soon
as (B + 1) such constellations are reached the current path can be abandoned. For small B
this algorithm works very fast. Dependent on the used processor and programming
language the enumeration (determination of the number of all packings for a number D
of dominoes) for squares up to [20x 20] can be done in less than a minute. The status of

. Even rather small rectangles cannot be handled as the number of paths is too

each cell is described in an oversized array sq(x,y) with0 <x<n+land0<y<m+1,
where x is the column and y the row, with the following numerical characteristics
(Figure 24):

col col
sa(x, v) 1 n
6| 6|6 |66 E empty cell
rowl|3 (0|0 0| 0|0]|-3
3|0/|0|0|0]|0]-3 horizontal domino
4(0(0|j0|0|0]|4
rowm|(5|(0|0|0|0]|O0|-5 vertical domino
6|-6|-6|-6|-6

Figure 24. Numerical characteristics
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Horizontal domino
Look at the left neighbor cell of the planned domino (blue)

case -1 X case 2 x case -2 % case5 x
2 a
y 1)-1]C y 2|C y -2|C
2 a
y|5]C
TR(green) + TL{blue) TL(blue) *TR(green) + TL(blue) ML{corner) + *ML
case3 x cased X

* if cell a or b is not empty

TR no hole on the right
y(3]|C a TL no hole on the left

ML missing hole in left column
MR missing in hole right column

*ML *ML

Look at the right neighbor cell of the planned domino (blue)

case-2 X case -5 X case -3 X case -4 X
b|2 b| |
¥ cl |2 1% (4 -ﬂ y b
b c| |4
Y c| |5
TR(blue) + *TL(green) MR(corner) + *MR *MR *MR

Vertical domino
Look at the left neighbor cell of the planned domino (blue)

case -1 X case 2 x case -2 X
2 a
¥ 1]-1|C ¥ 2|C ¥ -2|C
-2
TR{green) TR(green) + TL(blue) *TR(green)
case3 X cased X
[€] is the current cell
a
y(3]|€ a [a] is a cell above ¢
y[4]C
[] is a cell above the domino
but not above ¢
*ML ML(corner) + *ML
Look at the right neighbor cell of the planned domino (blue)
case-2 X case -3 x case -4 X
a2 a
v Cl-2 Y Ccl-3 a
¥y C|-4
*TL(green) *MR MR(corner) + *MR
Legend * if cella or b is not empty

[€] is the current cell
TR no hole on the right

TL no hole on the left [a] isacellabove c
ML missing hole in left column E] is a cell above the domino
MR missing in hole right column but not above ¢

Figure 25. Different cases of domino arrangements

513



514 Cibulis and Trump

The source code of the recursive procedure cpos is presented in an easy to read
basic pseudo code. All variables are integers and all are public except of x, y and mBc.
The main program askes for the values of m, n and D, calculates B, initializes the array
sq() as shown above and calls the procedure by cpos(1,1). Bad domino
constellations were count in Be and compared with B. At the end the value of the
variable Sent is the number of different packings. Source code of the recursive
procedure cpos (x, v) are presented in Appendix.

Different cases for the planned domino as they occur in the procedure are shown in
Figure 25.

The most important results obtained with a computer program are summarized
in four tables.

Table 1. Number of domin packings in [n x n]-squares with d(n) = do(n)
(including reflections and rotations)

n| Do()| P(n) n| Do()| P(n)
2 2 2 18 108 16
3 3 4 19 121 0
4 6 100 20 134 16
5 9 312 21 147 16
6 12 14 22 162 0
7 17 5020 23 177 0
8 22 4804 24 192 16
9 27 16 25 209 0
10 34 | 14844 26 226 0
11 41| 11128 27 243 16
12 48 16 28 262 0
13 57 7568 29 281 0
14 66 4900 30 300 16
15 75 16 31 321 0
16 86 964 32 342 0
17 97 560 33 363 16
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Table 2. Smallest number D(m, n) of dominoes for which a packing exists

14
15

17
18
19
20
21
22
23
24
25
26
27
28
29

31
32
33

m\n|

14

| 66

16 |

30 |

15
70

5

16 |

76
80
86

17
80

| &5

92
97

18
84
90
96
102
108

19
90
95
102
109
114
122

100 |

20
94

108
114
120
128
134

21

98

105
112
119
126
133
140
147

22

104

110

118 |

126

132 |

141

148 |

154

163

23 24
115 | 120

131 136
138 144
147 152
154 160
161 168
170 176
178 184

192

In the coloured cases: D(m, n) = dg(m, n) + 1

Table 3. Number of minimal domino packings in

(including reflections and rotations)

108 112 |

124 128

25
118

125

134
143
150
160
168
175
185

193

200
210

26
122

130

140
148
156
166
174
182
192
201
208
218
227

27
126
135
144
153
162
171
180
189

198 |

207
216
225
234
243

28 | 29

1132 136
140 145_

150 | 156
160 | 165
168 | 174
179 | 185
188 | 194
196 | 203

207 | 214

216 | 224
224 | 232
235 | 243
244 | 253
252 | 261
263 | 272
282

30

140 |
150 |

160
170
180
1%0
200
210
220

230 |

240
250
260
270
280
290
300

31

166
177
186
198
208
217
229

248
260
270
279
291
301
310

322

146 |
155

239

32
150
160
172
182
192
204
214
224
236
247
256
268
279
288
300
311
320
332
343
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154
165
176
187
198
209
220
231
242
253
264
275
286
297
308
319
330
341

363

[m x n] -rectangles with Do(m, n) dominoes

m\n 1 2 3 4 5 3 7 8 9 10 11 12 13 4] 15 16 17 18 19 20
1 1 1 2| 1 3 3 1 [ 4 1 10 5| 1 15 [3 1 21 7 1 28
2 2 2 6 16 2 12 as 2| 18] o8 2 2| 166 2 30 s 2| 3] %6
3 4 7| 6 B| 14 12 14 23 20 22 34 30 32 47 42 44 62 56
4 100 51| 10| 63 124 8 1892] 178 8] 3652 224 8 5796] o4 8 s3s0] 324
5| 312 8| 167 1394 10 327 3704 12 531 7376 14 779 12600 16 1071 19616
6 14| 10| 10| 16 10 10 16 10| 10 16 10 10 16 10| 10
7 5020 268 8| 12503 325 8| 21688 430 8| 34371 561 8| 51242 710
8 4804 8 168] 8546 s 134 10296 8| 148 12704 8 166 16204
9| 16 8 8 16 8 8 16 8| 8 16 8| 8
10 14848 36 s 14134 =4 8 15282] 98 8 18102 112
11 11128 8 20 10286 8 16| 12352 8 16| 16760
12 16 8 s 16 8 s 16 8 B
13 7568 4 8 4930 4 8 5064 4
14 4300 8 0| 345 8 o 4100
15 16 B 8 16 B 8
16 964 o 8 [
17 560 B 0 328
18 16 8 8
19 0 )
20 16
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m\n| 21 22 23] 24 25 26]  27] 28 29 30] 31 R 34] 3] 36 37 38 39 40)
1 8 1 36 9 1 as| 10 1 55] 11 1 66 12 1 8 13 1 o1 14 1
2 2 a2 am 2 a8 618 2| 54 77 2| 60 952 2| 66 1145 2| 72| 1358 2| 78|
3| 8 79 72 74 98 90 92 119 110 112 142)  132) 134 167 156 158  194| 182 184|  223|
4 8 11424 374 8 10920 424 8 18868 474 8 23268 524 8 28120 574 8 33a24] 624 8| 39180
5| 18] 1407 28664 20 1787 39984 22 2211 53816 24 2679 70400 26 3191 89976 28  3747| 112784 30| 4347
6| 16/ 10 10 16/ 10 10 16/ 10 10 16/ 10 10 16/ 10 10 16/ 10 10 16! 10
7 8 72687 877 8 99148 1062/ 8 131129 1265 8 169134 1486 8 213667 1725 B 265232 1982/ 8| 324333
8 8 184/ 20506 8 202 25204 8 220/ 30380 8 238 36034 8 256/ 42166 8 274 48776 8 292
o 16 8 8 16 8 8 16 8 8 16 8 8 16 8 8 16 8 8 16 8

10 8 21566 126 8] 25286 140 8] 29262]  154] 8| 33494] 168 8] 37982 182 8 22726] 196 8] 41726
11 8| 16 22400 8| 16 29204 8| 16 37272 8| 16 46712 8| 16 57632 8| 16| 70140 8| 16|
12 16 8 8 16 8 8 16 8 8 16 8 8 16 8 8 16 8 8 16 8
13 8] 5680 4 8 6295 4 8 6912 4 8 758 4 8 8144 4 8 8760 4 8| 9376
14 8| of sors 8| of e1m 8| of 73e0 8| o 8696 8| o 10122 8| o 11658 8| 0
15 16/ 8 8 16/ 8 8 16/ 8 8 16/ 8 8 16/ 8 8 16/ 8 B 16! 8
16 8 482 0| 8 482 0| 8 482 0| 8 482 0| 8 482 0| 8 482 0| 8 482
17 8| o 360 8| o 400 8| of 440 8| o as0 8| o s 8| o 560 B 0|
18 16 8 8 16 8 8 16 8 8 16 8 8 16 8 8 16 8 8 16 8
18 8 0 0 8 0 0 8 0 0 8 0 0 8| of 0 8| of 0 8| 0|
20 8 0| 8 8 0| 8 8 0| 8 8 8 8 0| 8 8 [ 8 3 0
al 16 8 8 16 8 8 16 8 8 16 8 8 16 8 8 16 8 8 16 8
2 | 0| ol 8| 0| ol 8| 0| ol 8| of ol 8| of ol B 0 0 3 0
23 ol 8| 0| ol 8| o ol 8| of ol 8| of ol 8| 0 0 3 )
24/ 16! 8 8 16/ 8 8 16/ 8 8 16! 8 8 16! 8 8 16 8
25 | 0 o 8| 0 o 8| o o 8| o o 8| 0| 0 3| 0
2 0 8| 0 o 8| o o 8| o 0 8| [ 0 8| 0|
27 16/ 8 8 16 8 8 16 8 8 16 8 8 16 8
28 | of 0 a‘ o| 0 a{ o| 0 a{ o} 0 s‘ o‘
29 o 8 0 o 8 0 o 8 0 o 8 0
30 16/ 8 8 16 8 8 16 8 8 16 8
31 | 0| ol 8| of ol 8| 0 0 3| 0|
32 ol 8| of ol 8| 0 0 3 )
33 16/ 8 8 16! 8 8 16! 8
34| | 0| ol 8| ) 0 3| )
35 o 8] ) 0 8| )
36 16/ 8 8 16 8
a7 0 s

38 o 8 0
19 16/ 8
a0, 0

In the coloured cases it was proved by exhaustive computer search that packings with
Do(m, n) dominoes do not exist.

4. Some generalizations

A natural generalization is the cubic lattice. An estimate

D(m, n, k){mgk] 7

can also be used for a three-dimensional rectangles. As in two dimensions, the estimate
(17) is sharp if any of the edge lengths is a multiple of 3. In this case, the minimum
packing is obtained by repeating the minimum two-dimensional rectangles in layers. For
illustration see Figure 26 with the minimal packing of [3x4x5]. More complex

[ ¢ I”IEEEII“IIE

Figure 26. Minimal packing of [3 x4 x 5] in layers

O O=O
Q=0 O
O Q==0O
O=0 O

o |
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The results obtained by using a computer program are summarized in Table 4.

Table 4. Number of minimal packings of [nx nx n]cube

D(n, n, n) Number of packings
D(1,1,1)=0 1
D(2,2,2)=3 8
D(@3,3,3)=9 6
D(4,4,4)=22 912
D(5, 5,5) =43 52 608
D(6, 6,6) =72 6

From Table 4 we see that [5x5x 5] cube is the smallest one for which estimate (17) is

no longer sharp. The result D(4, 4, 4) = 22 is significant in that the estimate (17) is sharp,
but the minimal packing cannot be obtained from the minimal packing of [4x 4]

rectangles.

Figure 27. Minimal packings of cubes forn=2, 3,4,5
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5. Conclusions

The article contains the theorems of pure mathematics, as well as computer-assisted
proofs. New progress has been made in solving the domino exclusion problem, including
a deeper understanding of the structure of minimal packings. Proof (or disproof) of the
hypothesis formulated in the Remark 4 could be a natural continuation of this study.
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Appendix: Source code of the recursive procedure cpos (x,y)

Proc cPos(x, y)

Switch sq(x, y) look at the current cell

Case 0 the current cell is empty
————————————————————— leave the cell empty if possible
If sq(x - 1, y) no hole on the left?

If sq(x, y - 1) no hole above?
cPos(x + 1, y)

———————————————————————————— memorize Bc

———————————————————— try to put a horizontal domino
If sgq(x + 1, y) = 0 is the right neighbor cell empty?
Switch sq(x - 1, y) left neighbor cell of the domino

Case -1 : Bc += 2

Case 2 : Be++

Case -2, 5 : Be++ : If sq(x, y - 1) Then Bc++
Case 3, 4 : If sq(1, y - 1) Then Bc++

Switch sq(x + 2, y) right neighbor cell of the domino
Case -2, -5 : Be++ : If sq(x + 1, y - 1) Then Bc++
Case -3, -4 : If sq(n, y - 1) Then Bc++

If Bc <= B
sa(x, y) =1 : sq(x + 1, y)
cPos(x + 2, y)
sq(x, y) =0 : sgq(x+ 1, y) =0 delete domino

-1 put horizontal domino

Bc = mBc
——————————————————————— try to put a vertical domino
If sq(x, y + 1) =0 is the cell below empty?
Switch sq(x - 1, y) left neighbor cell of the domino
Case -1 : Be++
Case 2 : Bc += 2
Case -2, 3 : If sq(x, y - 1) Then Bc++
Case 4 : Bet+ @ If sq(x, y - 1) Then Bct++
Switch sq(x + 1, y) right neighbor cell of the domino
Case -2, -3 : If sq(x, y - 1) Then Bc++
Case -4 : Be++ : If sq(x, y - 1) Then Bc++
If Bc <= B
sq(x, y) 2 : sq(x, y + 1) = -2 put vertical domino

cPos(x + 1, y)

sq(x, y) =0 : sg(x, y + 1) 0 delete domino

Bc = mBc
Case -2 the current cell is already occupied
cPos(x + 1, y)
Case -3, -4 the end of a row is reached
cPos(1l, y + 1)
Case -5 the end of the last row is reached

If Bc = B Then Scnt++



