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Abstract. In this survey we analyzed the literature, evaluated the methods for glaucoma identifi-
cation and identified the main issues faced by other researchers. From the literature it is observed
that most of the computer aided diagnosis (CAD) tools for identification of pathological changes
in eye fundus are in the early stage of development. The accuracy of glaucoma classification
achieved by different methods ranges from 87.50% to 99.41%. However, the classification re-
sults are obtained with different data sets and different quality images. Therefore, the further
research would be needed to create an algorithm using a data set contained of wider range and
various quality images. Also, it is necessary to estimate the advantages and disadvantages of the
existing methods and to compare the obtained classification results under the same conditions of
experiments.
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1 Introduction

Glaucoma ranks second among the most common eye diseases in the world, with ap-
proximately 60 million cases reported worldwide in 2010, the number of affected pa-
tients is forecasted to increase up to about 80 million by 2020 (Quigley et al., 2006)
and 111.8 million by 2040 (Tham et al., 2014). Glaucoma is an eye disease in which
the pressure inside the eye increases, the field of view narrows, the optic nerve begins
to atrophy and vision decreases. Prolonged increase in intraocular pressure (IOP) dam-
ages the nerve fibers in the eye and the optic nerve, resulting in a narrowing of the field
of view and impaired vision (Gayathri et al., 2014). The pressure in a healthy eye can
be 10-20 mmHg, although it can vary from person to person (Albert, 2018). The optic
nerve begins at the optic disk (OD), which is 1.5 mm in diameter, bright yellow, round
disc-shaped with a recess in the center (Wu et al., 2019), (Albert, 2018). The optic nerve
spreads nervous impulses between the retina and brain. The place of the retina where
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the optic nerve begins is called the optic nerve head (ONH). A complete ocular ex-
amination is necessary for an accurate diagnosis of glaucoma. To measure intraocular
pressure, a test called tonometry is performed. However, intraocular pressure is con-
stantly changing. For some people with glaucoma, the pressure in the eye may be nor-
mal. Glaucoma of any type, in addition to elevated intraocular pressure, is characterized
by glaucoma depression and atrophy of the optic disc and typical eye changes (Hirota
et al., 2020). Together with the optic disc (OD), the fovea (FOV) is also an important
anatomical landmark on the posterior pole of the retina. The fovea is a depression in
the inner retinal surface, the photoreceptor layer of which is entirely cones and which is
specialized for maximum visual acuity. The fovea is responsible for sharp central vision
and is located in the center of a darker area (Niemeijer et al., 2009). Another important
parameter in detecting the glaucoma is cup to disk ratio (CDR) (Gayathri et al., 2014).
The bigger the ratio, the more empty space there is in the nerve head. That space may
be left behind when nerve cells die. The severity of the glaucoma increases according
to the increase of the CDR. Most healthy persons in the population have average a cup
to disc ratio of about 0.3. A mild glaucoma, a moderate glaucoma and a severe glau-
coma might have a CDR of 0.4, 0.5–0.7, above 0.7 accordingly. The mild glaucoma
is the slowest form of the disease. Changes in peripheral vision are not noticeable. A
moderate glaucoma is primarily caused by a decrease in the visual field already in the
peripheral regions. Visual function is significantly reduced, resulting in reduced effi-
ciency (Acharya et al., 2015). To determine if a person has signs of glaucoma or not, a
glaucoma risk index (GRI) can be helpful. In (Mookiah et al., 2012) and in (Acharya
et al., 2015) have been proposed the GRI calculation based on significant features and
according to the selected method for the features extraction, the range of GRI might
be different. In (Mookiah et al., 2012) have been calculated the GRI 33.159±0.012 for
normal and 4.701±0.003 for glaucoma classes adapting HOS and DWT features while
in (Acharya et al., 2015) have been combined the ranked features extracted from the
Gabor transform coefficients and calculated the GRI 8.68±1.67 for normal class and
4.84±2.08 for glaucoma.

To avoid the unpleasant and irreversible effects of glaucoma, it is necessary to visit
eye doctors prophylactically and have vision tests performed (Raghavendra et al., 2018).
Various tests are needed to accurately diagnose glaucoma. Because primary glaucoma
is asymptomatic, it is difficult to detect in it’s early stage. In (Hirota et al., 2020) have
been described the variability of rim width (RW), optical disk margin (DM) and rim
margin (RM) and the complexity of the handcrafted process to find rim thinning. The
detection of rim thinking in severe glaucoma case (CDR≥0.7) was successful for 1 of
the 5 clinicians only.

Therefore, computer aided diagnosis (CAD) tools have recently become an impor-
tant object of researchers that are already working on the development of the CAD tools
to be used by ophthalmologists in diabetic retinopathy, blood vessel changes, myopia,
hypertomy identification (Stabingis et al., 2017), (Stabingis et al., 2018). In parallel, the
CAD tools for glaucoma identification are in development phase as well. The CAD tools
use digital fundus images (Figure 1.) that are captured using a fundus camera and help
to identify the retinal health using different computational algorithms (Raghavendra et
al., 2018). The key diagnostic parameters for the automated detection of glaucoma are:
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– Cup to Disk Ratio (CDR);
– Optic Disk (OD);
– Optic Nerve Head (ONH);
– The Fovea (FOV).

Fig. 1. Major structures of the optic nerve head. Eye fundus image of suspected glaucoma case.

2 Glaucoma detection process using digital fundus images

The process of the automatic diagnosis of glaucoma can be divided into 5 stages such
as image preprocessing, image segmentation, features extraction, image classification
and performance analysis. These stages are described in more detail in the following
subsections.

2.1 Image preprocessing

The ultimate goal of the preprocessing step is to increase the image quality. The pro-
posed preprocessing methods include:

– Contrast filter to highlight various defects (Hirota et al., 2020);
– Histogram equalization to increase contrast of the image (Mookiah et al., 2012),

(Acharya et al., 2015);
– Dimensionality reduction (Raghavendra et al., 2019);
– Various filters (Gaussian filter (Niemeijer et al., 2009), Wavelet (low-pass and high-

pass) filter (Gajbhiye et al., 2015), row spectrum filter, gray-scale morphological
filter (Niemeijer et al., 2009) and etc.) to improve the accuracy of feature detection;

– Vessel deformation definition (Matsopoulos et al., 2008);
– The gradient magnitude of the red plane of the image calculation (Niemeijer et al.,

2009);
– Any low frequency gradients over the image removal (Acharya et al., 2015);
– The morphological operations for the edges detection (Niemeijer et al., 2009).
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2.2 Image segmentation

Image segmentation divides a digital image into several segments to simplify an image
for the further analysis. Segmentation in digital fundus images incorporates:

– Geometric parameter model to detect the vessel centerlines (Matsopoulos et al.,
2008);

– Hough transform to identify the margin of the Optic Disc (Niemeijer et al., 2009);
– Probability maps for the Optic Disc center localization (Niemeijer et al., 2009);
– Template based method (Niemeijer et al., 2009);
– Label-Preserving transformations and dropout to avoid the over-fitting on images

(Chen et al., 2015).

2.3 Features extraction

Feature extraction stage selects variables into feature which makes the diagnosis easier
during classification. Various methods such as Gabor transform (Acharya et al., 2015),
Discrete Wavelet Transform (DWT) (Mookiah et al., 2012), (Matsopoulos et al., 2008),
High Order Spectra (Mookiah et al., 2012), Hierarchical feature extractor (Mitra et al.,
2018), (Raghavendra et al., 2018), autoencoder (Raghavendra et al., 2019) have been
proposed for the features extraction. The main features used to determine glaucoma are:

– Mean (Mitra et al., 2018), (Chen et al., 2015), (Gajbhiye et al., 2015), (Matsopoulos
et al., 2008), (Acharya et al., 2015);

– Variance (Mitra et al., 2018), (Chen et al., 2015), (Acharya et al., 2015);
– Median (Mitra et al., 2018);
– Rim margin coordinates of OD (Mitra et al., 2018);
– Image pixel values (Mitra et al., 2018), (Chen et al., 2015), (Matsopoulos et al.,

2008), (Raghavendra et al., 2019);
– Higher order moments (Gajbhiye et al., 2015), (Acharya et al., 2015);
– Skewness (Acharya et al., 2015);
– Kurtosis (Acharya et al., 2015);
– Energy (Acharya et al., 2015), (Gayathri et al., 2014);
– Entropy (Acharya et al., 2015);
– Standard deviation (Niemeijer et al., 2009);
– Latency space parameters extracted by the autoencoder (Raghavendra et al., 2019).

2.4 Image classification

Classification step classifies images into normal or glaucoma classes according to a
individual criterion defined in each classifier. Based on the features extracted from the
retinal image the classification procedure is run by classifiers:

– Convolutional Neural Network (CNN) (Mitra et al., 2018), (Chen et al., 2015),
(Raghavendra et al., 2018);

– Support Vector Machine SVM) (Gajbhiye et al., 2015), (Mookiah et al., 2012),
(Acharya et al., 2015);

– k-Nearest neighbour (Matsopoulos et al., 2008), (Niemeijer et al., 2009);
– Naive Bayesian (NB) (Acharya et al., 2015), (Gayathri et al., 2014);
– Artificial Neural Network (ANN) (Matsopoulos et al., 2008), (Gayathri et al., 2014);
– Sparse Autoencoder (Raghavendra et al., 2019).
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2.5 Performance evaluation

The parameter General Accuracy, the measures Specificity, Sensitivity, Area Under
Curve, Positive Predicted Value, Precision and Glaucoma Risk Index are the main
performance evaluation criteria to estimate the accuracy of the glaucoma identification
algorithm. More details are described by (Singh et al., 2019).

3 Literature Survey

From the literature it is observed that most of the algorithms (Table 1.) for the au-
tomated detection of glaucoma apply feature extraction and classification techniques.
The Higher Order Spectra (HOS) (Mookiah et al., 2012), the Discrete Wavelet Trans-
form (DWT) (Mookiah et al., 2012), (Matsopoulos et al., 2008), the Gabor transform
(Acharya et al., 2015) and etc. are the feature extraction techniques. k-Nearest Neighbor
(k-NN) (Matsopoulos et al., 2008), (Niemeijer et al., 2009), Support Vector Machine
(SVM) (Gajbhiye et al., 2015), (Mookiah et al., 2012), (Acharya et al., 2015), Convolu-
tional Neural Network (CNN) (Mitra et al., 2018), (Chen et al., 2015), (Raghavendra et
al., 2018), Artificial Neural Network (ANN) (Matsopoulos et al., 2008), (Gayathri et al.,
2014) and etc. are used to predict the classes. The architecture of the highest accuracy
achieved algorithms is detailed in Table 2.

Table 1. The recent methods proposed for the automated glaucoma detection.

Author Problem & Region of In-
terest

Method Features Performance

(Mitra et al.,
2018)

OD localization for
glaucoma analysis from
retinal fundus image

CNN + k-means
clustering

Latent space
from CNN

Acc: 99.05% MESSIDOR
Acc: 98.78% Kaggle
Acc: 99.41% DRIVE
Acc: 98.37% STARE

(Chen et al.,
2015)

Classification of fundus
images for OD
localization

CNN
Features
extracted from
fundus images
using CNN

AUC: 0.831 ORIGA
AUC: 0.887 SCES

(Gajbhiye et
al., 2015)

Classification of fundus
images for ONH
localization

SVM
Wavelet and
Moment
features

Acc: 98.33% RIM-1 R2
Sen: 100.00% RIM-1 R2
Spe: 96.67% RIM-1 R2

(Matsopoulos
et al., 2008)

Classification of fundus
images for OD
localization

ANN + k-NN +
Self-organizing
map

Discrete
Wavelet
features using
DWT

Acc: 87.50% EGPS
Sen: 85.70% EGPS
Spe: 88.90% EGPS
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Author Problem & Region of In-
terest

Method Features Performance

(Raghavendra
et al., 2019)

Classification of fundus
images for CDR
localization

Sparse
Autoencoder +
Soft-max
regression

Features
extracted from
Autoencoder

Acc: 95.30% KMC
Spe: 98.30% KMC
P: 96.76% KMC

(Raghavendra
et al., 2018)

Classification of fundus
images for CDR
localization

CNN + Linear
discriminant
analysis

Latent space
from CNN

Acc: 98.13% KMC
Spe: 98.30% KMC
Sen: 98.00% KMC
PPV: 98.79% KMC

(Gayathri et al.,
2014)

Classification of fundus
images for ONH
localization

MLP and BPNN
+ ANN + NB

Wavelet Energy
features

Acc: 89.60% Hospitals
database

(Acharya et al.,
2015)

Classification of fundus
images for ONH
localization + GRI
evaluation

SVM
23 features
extracted using
Gabor
transform

Acc: 93.10% KMC
Sen: 89.75% KMC
Spe: 96.20% KMC

GRI for normal class:
8.68±1.67
GRI for glaucoma class:
4.84±2.08

(Niemeijer et
al., 2009)

Classification of color
fundus images for OD and
FOV localization

k-NN Features
extracted using
Gaussian filter

Acc: 93.0% for the op-
tic disc, Abràmoff and
Suttorp-Schulten, 2005

Acc: 89.0% for the fovea
Abràmoff and Suttorp-
Schulten, 2005

(Mookiah et al.,
2012)

Classification of fundus
images for ONH
localization + GRI
evaluation

SVM 13 Features
extracted using
HOS and DWT

Acc: 95.00% KMC
Sen: 93.33% KMC
Spe: 96.67% KMC
PPV: 96.97% KMC

GRI for normal class:
33.159±0.012
GRI for glaucoma class
4.701±0.003

* Acc - Accuracy, Sen - Sensitivity, Spe – Specificity, AUC - Area under curve, PPV - Positive Predicted
Value, P – Precision, CNN - Convolutional Neural Network, SVM - Support Vector Machine, ANN -
Artificial Neural Network, k-NN - k-Nearest Neighbour, MLP - Multilayer Perceptron, BPNN - Back
Propagation Neural Network, NB - Naive Bayes, HOS - Higher Order Spectra, DWT - Discrete Wavelet
Transformation.
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The detailed review of the recent studies in glaucoma diagnostic parameters local-
ization (Table 1.) has shown that the accuracy of the classification varies depending
on the data set. The overall achieved classification accuracy ranges from 87.50% to
99.41%. Although the researchers are working on algorithms creation but it is very
difficult to summarize and compare the results due to the use of different data sets.
Analyzing the data sets on a case-by-case basis the advantages, compared to regular
classifiers, are shown by neural networks:

– CNN does not include the preprocessing stage that might influence the performance
accuracy (Raghavendra et al., 2018);

– CNN is able to extract the features automatically so a lot of computational time and
memory are saved (Raghavendra et al., 2018);

– CNN does not require the image segmentation as it is powerful to provide the sig-
nificant features for the normal and glaucoma subjects description (Raghavendra et
al., 2018);

– CNN can process even on less quality images (Mitra et al., 2018);
– CNN process on the entire image and encodes valuable information about the vari-

ous features (Mitra et al., 2018);
– As the CNN process on the full image during training, it is able to generate a com-

pletely new dataset (Mitra et al., 2018);
– Adjusting the depth and size of the latent space results in an ever-changing dimen-

sion and ever-changing properties. The CNN is able to extract these properties from
which the classification result is obtained (Stabingis et al., 2017);

– Autoencoders can select features serving as input for succeeding layers instead of
considering the image as a whole.

As the neural networks have shown a remarkable advantages, we decided to analyse
the architecture of the recent proposed methods (Table 2.).

Table 2. Neural networks for automated glaucoma detection.

Author Method & Architecture Performance

(Mitra et al., 2018) CNN, 24 layers of Batch Normalization,
Convolutional and Max Pooling surfaces

Acc: 99.05% Kaggle
Acc: 98.78% MESSIDOR

(Chen et al., 2015) CNN, 6 layers of Convolutional and
fully-connected layers. Rectified Linear
Unit (ReLU)

AUC: 0.831 ORIGA
AUC: 0.887 SCES

(Matsopoulos et al., 2008) ANN, 3 layers of the Input layer, Hidden
layer and the Output layer + Sigmoid
activation function

Acc: 87.50% EGPS
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Author Method & Architecture Performance

(Raghavendra et al., 2019) Sparse Autoencoder, 2 layers of the
Hidden layer and Soft-max layer

Acc: 95.30% KMC

(Raghavendra et al., 2018) CNN, 18 layers of Convolutional layer
and Max Pool layer.Logarithmic soft-max
activation function

Acc: 98.13% KMC

(Gayathri et al., 2014) ANN, Multilayer Perceptron of Input
layer, 3 Hidden layers and Output layer

Acc: 97.60% Hospital database

* Acc - Accuracy, AUC - Area under curve.

The neural networks used in latest studies are composed of different architectures.
Many methods have used their own data sets and there are no generalized results on how
those data sets interact with each other. A separate study would be needed to identify
the advantages and disadvantages of these architectures as the differences between the
architectures are quite large. Additionally, the study would be needed to assess how
these algorithms work for different data sets and different quality images including the
evaluation of computation time, learning speed and classification accuracy.

4 Data sets for analysis

Although a standard databases are used, different investigators select the specific cases,
different data sets and data augmentation techniques (Mitra et al., 2018), (Chen et al.,
2015). The data sets used in recent studies are:

– RIM-1 r2 (WEB, e) database consists of 455 retinal fundus images where of 200
images are glaucoma affected and 255 images are normal.

– The ORIGA (WEB, d) database consists of 482 normal and 168 glaucoma fun-
dus images. The ORIGA is an online retinal fundus image database for glaucoma
analysis and research.

– The STARE (WEB, f) database consists of 400 eye fundus images. This database is
the product of Structured Analysis of the Retina Project that was initiated in 1975
by Michael Goldbaum, M.D., at the University of California, San Diego.

– The dataset provided by the optic disc reading center of the European Glaucoma
Prevention Study (EGPS) (The European Glaucoma Prevention Study Group, 2002).
It contains 127 Optic disc photographs. A color slide scanner Minolta Dimage Dual
III Film Slide Scanner has been used for the image digitalization. A cropping and
resizing algorithms have been used to increase the speed of image preprocessing.

– The dataset provided by Kasturba Medical College, Manipal, India (KMC) (WEB,
b) contains of 589 without glaucoma signs and 837 glaucoma images. It includes
294 normal and 418 glaucoma subjects. The images were captured using Zeiss FF
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450 Fundus camera. The fundus images of this dataset can be used for diagnosis
of various eye diseases like glaucoma, maculopathy, diabetic retinopathy (DR) and
age related macular degeneration (AMD) (Acharya et al., 2015).

– The MESSIDOR (WEB, c) dataset is one of the biggest open-source dataset that
consists of 1200 eye fundus images. The images were acquired using 3CCD camera
on a Topcon TRC NW6 non-mydriatic retinograph with a 45 field of view. As most
of the original images have a blank space apart from the retina, they are cropped
and resized (Mitra et al., 2018).

– The DRIVE (WEB, a) dataset consists of 40 images, where of 33 have no symp-
toms of diabetic retinopathy and 7 are indetified as having a mild early diabetic
retinopathy. The data were provided by a diabetic retinopathy screening program
in The Netherlands. A Canon CR5 non-mydriatic 3CCD camera with a 45 field of
view has been used for the image acquisition.

The listed data sets RIM-1 r2, ORIGA, STARE, EGPS, KMC, MESSIDOR and
DRIVE are publicly available and can be used in our further work. Also, Vilnius Uni-
versity has received a bioethics permit and is already starting to collect its data which
will be publicly available to other researchers. Kaggle, SCES and the data set provided
by the Abramoff and Suttorp-Schulten program are not available.

5 Conclusion and Discussion

In order to get acquainted with the latest work in automated glaucoma detection, the
following tasks have been done:

– Literature survey;
– Algorithm analysis;
– Evaluation of the classification accuracy obtained by classical methods and neural

networks;
– Review of the data sets that are publicly available and can be used for the future

research;
– Neural network architectures analysis.

From the recent researches it is observed that most of the algorithms have been devel-
oped for a quite high quality images only and there are no algorithms that could work
for a less quality images captured by the hand held cameras. The main goal of recent
algorithms is to solve an image classification problem. Currently the overall achieved
image classification accuracy ranges from 87.50% to 99.41%. However, due to different
architectures, these results and the parameters extracted by the neural network for an
image classification stage are difficult to interpret. So the purpose of our future work
would be:

– The development of the algorithms that could handle different quality images ob-
tained by different cameras;

– The performance of experiments with images of different quality and evaluate the
impact they have on neural network learning;



Deep Learning Methods for Glaucoma Identification Using Digital Fundus Images 529

– The link of the neural network to biomedical parameters to make the obtained re-
sults understandable;

– The advantages and disadvantages evaluation of the existing architectures;
– The evaluation of the impact of neural network architecture on classification results;
– The experiment on layers number and latent space depth.
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Stabingis, G., Bernatavičienė, J., Dzemyda, G., Paunksnis, A., Treigys, P., Vaičaitienė, R.,
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