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Abstract. Nowadays, data-driven fuzzy inference systems (FIS) have become popular to solve 

different vague, imprecise, and uncertain problems in various application domains. However, 

plenty of authors have identified different challenges and issues of FIS development because of its 

complexity that also influences FIS quality attributes. Still, there is no common agreement on a 

systematic view of these complexity issues and their relationship to quality attributes. In this 

paper, we present a systematic literature review of 1340 scientific papers published between 1991 

and 2019 on the topic of FIS complexity issues. The obtained results were systematized and 

classified according to the complexity issues as computational complexity, complexity of fuzzy 

rules, complexity of membership functions, data complexity, and knowledge representation 

complexity. Further, the current research was extended by extracting FIS quality attributes related 

to the found complexity issues. The key, but not all, FIS quality attributes found are performance, 

accuracy, efficiency, and interpretability. 

Keywords: membership function, fuzzy rule, fuzzy inference system, FIS, issue, complexity, 

quality attribute 

1. Introduction 

Nowadays, data-driven fuzzy inference systems (FIS) become popular to solve different 

vague, imprecise and uncertain problems, like prediction (Lee, 2019), network 

vulnerability evaluation (Fan et al., 2019), data classification (Ravi and Khare, 2018), 

(Harandi and Derhami, 2016), image processing (Ananthi et al., 2016), data granularity 

(Zhu et al., 2018), forecasting (Lou and Dong, 2012), etc. The development of such FIS 

involves dataset usage for automatic generation of membership functions and fuzzy rules 

used for inferencing or assessment. In FIS development using data-driven approach a 

fuzzy model (i.e., MF and fuzzy rules) can be learned quite efficiently and needs less 

expert input, (i.e., potentially biased human information is minimized) (Nasiri at al., 

2011; McKay and Harris, 2016).  

The literature presents different techniques for FIS development (Askari, 2017), 

(Ruiz-Garcia et al., 2019), (Lee, 2019). It highlights numerous challenges and issues 

related to its complexity, like the rule base complexity (Antonelli et al., 2010), data 

complexity (Alcalá et al., 2009), a large number of linguistic terms (Askari, 2017), 
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(Ephzibah, 2011), etc. However, those complexity issues are not investigated sufficiently 

in a comprehensive way. In the analysed papers, authors have focused on a particular 

one or two issues separately, like computational complexity (Ruiz-Garcia et al., 2019), 

(Zhu et al., 2018), membership function (MF) complexity (Fan et al., 2019), (Ibarra et 

al., 2015), fuzzy rules complexity (Harandi and Derhami, 2016), (Bouchachia and 

Vanaret, 2014), etc. This lack of understanding of a general situation hampers progress 

in the field since academics offer a limited approach (Ivarsson and Gorschek, 2011).  

Moreover, these complexity issues influence FIS quality attributes (Wohlin, 1996, 

December), (Nguyen-Duc, 2017). Still, there is no common agreement on a systematic 

view of these FIS complexity issues and their relationship to FIS quality attributes. 

Therefore, it is not clear which FIS complexity issues influence quality attributes. 

Knowing the proper quality attributes in FIS context would be beneficial for FIS 

development.  

The main research question of this review is – What are the complexity issues in FIS? 

(RQ1). The further extension of RQ1 is RQ2 as the following: Which FIS quality 

attributes are influenced by FIS complexity issues? 

In order to answer RQ1, a systematic literature review (SLR) is carried out. 

Consequently, to answer RQ2 and to determine the relationship between FIS quality 

attributes and FIS complexity issues, the extraction of FIS quality attributes related to the 

found complexity issues is performed in this paper. This research has two purposes and 

contributions. It is used to determine the possible set of complexity issues first, and, 

second, FIS quality attributes related to the found FIS complexity issues. The rest of this 

paper is structured as follows. Section 2 introduces complexity in FIS and explains the 

use of this concept in this paper. Section 3 presents the review method. Section 4 shows 

the obtained results of SLR. Section 5 discusses the paper results, answers the questions 

RQ1 and RQ2, and concludes the paper. 

This paper is an extension of work originally presented in conference name 

(Miliauskaitė and Kalibatiene, 2020a). 

2. Related work 

In this research, we have viewed the complexity concept in the context of FIS, but not in 

general. Therefore, below in this section, we present the complexity concept analysed in 

the reviewed papers. Consequently, we view FIS quality attributes presented in the 

analysed related papers in the scope of the found complexity issues. However, since 

there are little studies on FIS quality attributes, but not software system quality attributes 

in general. 

2.1. Data-driven fuzzy inference system and its complexity issues 

According to (Askari, 2017; Guillaume, 2001), a data-driven Fuzzy Inference System 

(FIS) consists of the main components (Fig. 1) as follows:  

 Data Collection and Pre-Processing (Data Component) component is 

responsible for crisp or linguistic datasets collecting from one or multiple 

Data Source/(-s) and its cleaning, organization and integration (Wang et al., 

2017) for future data exploitation in the Fuzzification Mechanism.  

 Fuzzification Mechanism supports the application of numerous fuzzification 

methods. It converts the data input into fuzzy input. 
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Fig. 1. The reference schema of a data-driven Fuzzy Inference System (FIS)  

(Miliauskaitė and Kalibatiene, 2020a). 

 

 Knowledge Base is formed during the conversion of data input into fuzzy 

input, i.e., fuzzification. Consequently, it consists of a collection of MFs and 

fuzzy rules, used by the Fuzzy Inference component for inferencing.  

 Fuzzy Inference component uses Knowledge Base and a particular fuzzy 

reasoning mechanism, like Mamdani or Takagi-Sugeno (T–S), to obtain a 

fuzzy output.  

 Output Processing performs approximation, defuzzification and type 

reduction to convert the results of inferencing into output data (i.e., crisp or 

linguistic values), which should be optionally understandable to a 

Stakeholder or a System, which uses FIS output for its purpose. 

The distinctive feature of FIS is that these systems are data-driven. MFs and fuzzy 

rules are generated from synthetic or real data streams (like data of measurements, etc.) 

automatically employing data clustering or other techniques instead of being defined by 

an expert, i.e., knowledge-driven (Adoko et al., 2013; Miliauskaitė and Kalibatiene, 

2020b). This approach is commonly referred to as data-driven or fuzzy identification 

(Adoko et al., 2013). In order to ensure the accuracy of the rules derived from the data, 

they are interpreted and analysed. Consequently, some rules and MF can be modified or 

removed from FIS, or new rules may be added to FIS using expert knowledge, if 

required. A data-driven approach is usually employed in T–S FIS (Adoko et al., 2013). 

However, when inputs increase, the number of MFs and consequent rules increases 

exponentially (Adoko et al., 2013; Askari, 2017). As a result, missing, unnecessary and 

redundant rules are more likely to occur (Shill et al., 2015; Askari, 2017). Consequently, 

those rules interpretation is more complicated, and some of the rules may not correctly 

describe the physical problem being investigated (Adoko et al., 2013). Therefore, some 

authors, like (Adoko et al., 2013; Bashari et al., 2011), recommended using the data-

driven approach when measured data of a given process exist, and formulating the fuzzy 

model based on expert knowledge is difficult. 

The concept of complexity in FIS can be viewed from different perspectives. In 

(Antonelli et al., 2010), the rule base (RB) complexity is measured as the total number of 

conditions in the antecedents of the rules. Authors of (Antonelli et al., 2011a) understand 

complexity as interpretability of RB, and interpretability of fuzzy partitions as integrity 

of the database (DB). In (Alcalá et al., 2009), data complexity is measured in terms of 

the average number of patterns per variable (i.e., data density) for pattern recognition.  

Complexity is also measured by counting the number of operations (Ephzibah, 2011) 

or number of elements in RB including the number of MFs, rules, premises, linguistic 

terms, etc. (Askari, 2017). Selecting a small number of linguistic terms and the right 

linguistic terms is essential for better interpretability. Total number of parameters of the 

fuzzy RB is also a measure of interpretability. A system with less number of parameters 
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is more interpretable and less complex (Ishibuchi and Nojima, 2009). In (Askari, 2017), 

(Kaynak et al., 2002), authors suggest reducing the exponential complexity of FIS by 

reducing the number of fuzzy (linguistic) terms or the number of fuzzy (linguistic) 

variables or both. According to (Antonelli et al., 2016), the model interpretability is 

measured in terms of complexity: “Complexity is affected by the number of features used 

for generating the model: the lower the number of features, the lower the complexity”.  

In (McCulloch et al., 2020) authors understand complexity as the increase of fuzzy 

sets, e.g., the union of multiple MFs instead of a single MF forms fuzzy sets. Authors of 

(Wang et al., 2020) analyse a sampled-data stabilization issue for T–S fuzzy systems 

with state delays and nonuniform sampling. In a real-time hardware application, the 

computational complexity of an algorithm becomes a critical issue (Velusamy and 

Pugalendhi, 2020). Consequently, as authors of (Velusamy and Pugalendhi, 2020) state, 

the amount of computational requirement increases with the number of operations. 

Therefore, authors propose simultaneous evaluation of MFs and the rule set according to 

decision variables using the water cycle algorithm that results in a compact rule set and 

identification of an optimal path, and, consequently, consistently reduces the 

computational overhead. According to (Chiang et al., 2010; Miriyala et al., 2018; Yildiz, 

2013), the presence of a large volume data leads to the rise of the number of MFs that 

need to be computed. This makes complex to implement FIS.  

2.2. FIS quality attributes 

Nowadays, there are numerous works analysing software quality attributes. In this 

research, we emphasize on FIS quality attributes related to the found complexity issues. 

Primary for our study, we have used ISO/IEC/IEEE International Standard 

(ISO/IEC/IEEE, 2017) as a unified source for the meaning of a software system quality 

attributes. However, we have not derived and specified definitions of all possible 

software systems quality attributes not to limit or point in our research's wrong direction. 

According to (Febrita et al., 2017), an excellent interpretable FIS meets the criteria as 

the following: 1) fuzzy set transparency, 2) simplicity of fuzzy rules, and 3) simplicity of 

the fuzzy model. The fuzzy set transparency ensures that each fuzzy sets are distinct and 

have distinguishable differences, i.e., the fuzzy sets overlapping is minimized. The 

simplicity of the fuzzy rules talks about the type of rules used (Febrita et al., 2017), i.e., 

a number of OR, product, etc. in composing rules. Therefore, to obtain a simpler FIS, the 

types of rules should be simplified, like in (Gegov et al., 2017) it is proposed several 

inconsistent rules replace by a single equivalent rule, to optimize parameters of a 

composite rule (Ma et al., 2017), or rules optimization (Dhebar and Deb, 2020). The 

fuzzy model’s simplicity is determined by the number of inputs and inference rules. The 

more inference rules are contained in FIS, the more complicated the system will be 

(Febrita et al., 2017). Consequently, that FIS will lack interpretability. That is, the 

inference ruleset should be sparse (Tan et al., 2016; Huang and Shen, 2008). 

Consequently, removing those rules, which can be approximated by their neighbours, 

allows us to reduce FIS complexity (Tan et al., 2016). The same can be said about the 

simplicity of the input dataset, i.e., the more complete and compact dataset is used, the 

simpler the resulting FIS is obtained from this dataset. Unfortunately, modern datasets 

are huge, sparse or high dimensional (Chaudhuri, 2014; Soua et al., 2013; Lucas et al., 

2012; Luo et al., 2019), has wide-range characteristic (Chen et al., 2020), etc. 

In the analysed papers, some authors mention FIS attributes affected by its 

complexity. In (Marimuthu et al., 2019), the optimal number of fuzzy rules allows to 
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achieve an accuracy rate of 95,8 % and to reduce the computational complexity by 

triggering less number of rules. As stated in (Altilio et al., 2018), the optimal number of 

fuzzy rules and MFs, estimated using a Regularized Least Squares algorithm and 

following a procedure based on sparse Bayesian learning theory, allows to achieve better 

FIS effectiveness. Authors of (Ravi and Khare, 2018) optimize MFs and fuzzy rules 

using the exponential brainstorm optimization algorithm that allows utilizing them 

effectively for data classification. The proposed approach obtained the accuracy of 

88,8 %, which is higher in comparison with the existing adaptive genetic FIS. In 

(Golestaneh et al., 2018), authors aim is to significantly reduce the neural network 

complexity by reducing the number of linear learning parameters, and to decrease the 

sensitivity while the acceptable accuracy and generalization performances are preserved. 

Askari (2017) proposed a novel Multiple-Input and Multiple-Output Clustering based 

FIS that satisfies the interpretability criteria. 

Summing up, based on the related work, FIS complexity occurs in each component 

of FIS (see Fig. 1). However, there is no research analysing FIS complexity in a 

systematic way. Moreover, there is no common agreement on a systematic view of FIS 

complexity issues and their relationship to FIS quality attributes. 

3. Review method 

The review method was developed and executed according to the guidelines and hints 

provided by (Kitchenham and Charters, 2007; Kitchenham et al, 2009). The structure of 

the method is adapted from (Dybå and Dingsøyr, 2008) and its general schema is 

presented in Fig. 2. 

3.1. Defining research questions and scope 

Questions Formulation: the main question focus (RQ1) is related to the complexity 

issues of FIS. The secondary research focus is concerned with the FIS quality attributes 

related to the found FIS complexity issues. 

Keywords and Synonyms: membership function, develop*, generat*, construct*, 

issue*, limit*, complex*. 

Effect: Description of different FIS development complexity issues; visualisation of 

statistics by diagrams, view integration. 

Studies Language: English. 

Studies Type Definition: Journal publications (articles – A) and proceeding papers 

(PP). 

Searching sources evaluation: As the study is focused on complexity issues of FIS, 

relevant papers should be searched in databases covering Computer Science (CS), 

Information Systems (IS), and Software Engineering (SE).  

The Web of Science (WoS) database was chosen for the analysis, since it covers a 

wider range of refined and not duplicating researches. Moreover, the initial study of 

sources shows that it contains a significant number of papers relevant to the research 

questions. It enables us to find the most suitable and complete high-quality refereed 

studies for our research. WoS indexes high-quality peer-reviewed papers from the most 

relevant digital libraries for computer science, including journal and conference papers 

from IEEE Xplore, Springer Link, Science Direct, and ACM.  
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Fig. 2. The schema of the review method. 

WoS and Scopus databases are not overlapping only 12,2 % of documents in 

Engineering and Computer Science (Martín-Martín et al., 2018). WoS has an Impact 

Factor (IF), which is calculated to assess the quality of publications and the level of 

scientific research in close fields of knowledge. Moreover, WoS presents an easy 

mechanism to export the search results in different formats, supported by various 

reference management software, like Mendeley
1
, EndNote

2
, etc., and bibliometric tools, 

like VOSviewer
3
, CiteSpace

4
, etc. 

The main keywords, their synonyms and the search string: the main keywords and 

their synonyms are presented in Table 1. 

                                                 
1 https://www.mendeley.com/?interaction_required=true 
2 https://endnote.com/ 
3 https://www.vosviewer.com/ 
4 http://cluster.cis.drexel.edu/~cchen/citespace/ 
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The finally developed search string: (fuzzy) AND ("membership function*") AND 

("develop*" OR "generat*" OR "construct*") AND ("issue*" OR "limit*" OR 

"complex*") 

Table 1. Keywords used for the search string. 

 

Main concepts Related terms Keywords used in the search 

Fuzzy Inference System fuzzy system, FIS fuzzy* 

membership function function, MF membership function* 

complex issue, limitation issue*, limit*, complex* 

development construction, generation develop*, generat*, construct* 

3.2. Studies inclusion and exclusion criteria 

Here we present main criteria used for the studies inclusion or exclusion from the 

review. 

Studies Inclusion Criteria (IC):  

IC1: Universally accepted relevant fundamental works on MF development, MF 

generation, MF construction, FIS and issues, limitations or complexity.  

IC2: Papers must be available to download. 

Studies Exclusion Criteria (EC):  

EC1: Exclude papers, which contain relevant keywords, but MF and FIS issues, 

limitations or complexity are not the main topic of the paper. 

EC2: Exclude relevant sources that repeat ideas described in earlier works. 

EC3: Exclude papers, whose length is less than 8 pages, since such short papers can 

present only a general idea, but not describe overall approach. 

EC4: If there are several papers of the same authors with the similar abstract, i.e., 

one paper is an extension of another, the less extended (i.e., containing less pages) paper 

is excluded. 

The main statistics of the search is presented in Table 2 and Fig. 3.  

Table 2. Number of papers (Articles (A) and Proceedings Papers (PP)). 

 

 Years A PP All 

The primary set of papers 1991-2019 864 476 1 340 

The secondary set of papers 1993-2019 79 23 102 

In Fig. 3, the trend of the research on the topic is illustrated. The number of papers on 

FIS application to solve different complex domain problems raised yearly. This increase 

of papers can be attributed to technological development and the need to solve uncertain 

and vague problems in different application domains. However, the issues related to the 

usage of FIS are analysed insufficiently (Table 2 and Fig. 3). 
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Fig. 3. Number of all papers before and after applying IC and EC. 

3.3. Threats to validity 

This section discusses the potential threats to validity of this SLR together with the 

actions we have taken to mitigate them. Although we carefully followed the SLR process 

(described in this section and presented in Fig. 2) to reduce the threats to the validity of 

the results and conclusions drawn in this paper, we faced some threats at their different 

stages that need further discussion. 

Construct validity: When defining the SLR scope and keywords, we faced 

uncertainty about whether researchers refer to the FIS complexity issues or usage of FIS 

to solve particular tasks in a problem domain. Therefore, inclusion of the general 

keywords (like fuzzy inference system*, FIS, fuzzy system*, "complex*, issue) into the 

search string to cover all of the related papers generated an initial pool of 4 357 papers. It 

mitigated the risk that the study setting does not reflect the construct under study, at the 

cost of adding additional manual efforts mainly when applying the inclusion and 

exclusion criteria. Consequently, a primary analysis of papers was done to familiarize 

with the FIS complexity issues and to define the related keywords more precisely. Some 

of the main related works are presented in Section 2. 

When defining the searching strategy for paper selection, we faced two threats 

regarding the study’s completeness, i.e., whether both (1) the searching sources and (2) 

the search string enabled all relevant papers to be retrieved. As mentioned previously, 

we used WoS since it enables us to find the most suitable, complete, and not duplicating 

high-quality refereed papers for our research. Second, for dealing with validity threats 

regarding the search string (i.e., missing keywords leading to the exclusion of relevant 

papers), we carried out the primary study during preparing (Miliauskaitė and 

Kalibatiene, 2020a). The final search string was the conjunction of the keywords 

presented in Table 1 in the scope of CS. 

Finally, we are aware that our study has a limitation related to coverage. The number 

of candidate papers might have been affected because (1) the search string might not be 

complete and might require additional or alternative terms, and (2) only one search 

strategy was used to select the candidate papers. These issues can be improved using 

different keywords thesauri, other search strategies, like snowballing or bibliometric 

analysis, or using more soft criteria for the papers inclusion and exclusion. However, 

considering the significant number of the primary set of papers (1 340), we consider that 
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our results and findings are valuable for providing researchers and practitioners with an 

overview of the state of the art of FIS complexity issues. 

Internal validity: Individual researcher’s bias in (1) deciding whether to include or 

exclude a paper into the secondary set, (2) classifying it according to the complexity 

issues and FIS quality attributes, and (3) analysing the results make an internal threat to 

validity in this research that could lead to biased or erroneous conclusions. We took two 

main actions to minimize this threat. First, we have used a clearly defined searching 

strategy (see Fig. 2) to ensure a similar understanding. Second, both authors of this paper 

have assessed the obtained results (primary and secondary sets of papers) independently 

and combined the results.  

External validity: A lack of consensus when researchers refer to the domain 

addressed in this study (e.g., the FIS complexity issues or usage of FIS to solve the 

particular issues in a problem domain) might lead to an inaccurate generalization in our 

findings. The results and conclusions of this SLR are only valid for the FIS, which 

understanding is described in Section 2. We have made great efforts to systematically set 

up the SLR protocol and apply it to ensure those general conclusions are valid 

irrespective of the lack of consensus highlighted.  

4. Results 

4.1. Complexity issues in FIS (RQ1) 

The main results of our SLR according to RQ1 are presented in Table 3. It consists of six 

columns, five of which present the complexity issues found in the abstracts of the 

secondary set of papers. They are the following: (1) computational complexity (CC) (i.e., 

a huge number of calculations in all FIS components; algorithm complexity); (2) 

complexity of fuzzy rules (CFR) (i.e., extraction, modification and optimization of fuzzy 

rules); (3) complexity of MF (CMF) (i.e., MF development, optimization, simplification; 

partitioning; FOU definition; fuzzy numbers); (4) data complexity (DC) (i.e., a large 

number of input variables, incomplete data); and (5) knowledge representation 

complexity (CKR) (i.e., development of MF and RB issues). The secondary set of papers 

is presented in Annex 1
5
. 

As can be seen from Table 3, complexity issues by their frequency of occurrence in 

the analyzed papers are distributed in descending order as the following. The most 

frequently found is the complexity of fuzzy rules (58 of 102 papers). The computational 

complexity (30 of 102 papers) and the complexity of MF (25 of 102 papers) were found 

in less than a third of the analyzed papers. The least occurred the knowledge 

representation complexity (13 of 102 papers) and the data complexity (7 of 102 papers). 

Temporal distribution of five complexity issues found in the analysed papers 

included in the review are given in Fig. 4. The size of bubbles indicates the number of 

papers analysing each complexity issue per year. The larger the bubble, the more papers 

addressing the particular complexity issue. 

As we can see from Fig. 4, the most relevant and constantly found complexity issue 

in FIS is complexity of fuzzy rules (CFR) (2) (58 of 102 papers). The second relevant 

complexity issue is computational complexity of FIS (CC) (1) (30 of 102 papers). The 

third relevant complexity issue is complexity of MF (CMF) (3) (25 of 102 papers). 

                                                 
5 https://github.com/Jolantux13/Annex_BJMC  

https://github.com/Jolantux13/Annex_BJMC
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Table 3. Complexity issues in FIS found in the abstracts of the secondary set of papers (1 – 

mentioned, 0 – not mentioned). 

 

References (1) (2) (3) (4) (5) 

(Ruiz-Garcia et al., 2019), (Lee, 2019), (Melin et al., 2019), 

(Zhu et al., 2018), (Ananthi et al., 2016), (Chen et al., 2016), 

(Ren et al., 2016), (Kumbasar and Hagras, 2015), 

(Ramathilaga et al., 2014), (Zhu et al., 2013), (Murshid et al., 

2012), (Choi and Rhee, 2009), (Starczewski, 2009), (Lee and 

Pan, 2009), (Nie and Tan, 2008), (Modi et al., 2007), (Pan et 

al., 2007), (Hong et al., 2003), (Hsu and Szu, 2003), (Yao et 

al., 2000), (Giachetti and Young, 1997), (Kóczy and Sugeno, 

1996) 1 0 0 0 0 

(Fan et al., 2019), (Elkano et al., 2018), (Almasi and Rouhani, 

2016), (Ibarra et al., 2015), (Kaur et al., 2015), (Deng and 

Yao, 2014), (Alaei et al., 2013), (Antonelli et al., 2011a), 

(Tamir and Kandel, 2011), (Fateh, 2010), (Bridges et al., 

1995) 0 0 1 0 0 

(Marimuthu et al., 2019), (Golestaneh et al., 2018), 

(Chakraborty et al., 2013), (Kóczy and Botzheim, 2005), 

(Marinelli et al., 1997) 1 1 0 0 0 

(Rajeswari and Deisy, 2019), (Sami et al., 2014) 0 1 1 0 1 

(Altilio et al., 2018), (Ravi and Khare, 2018), (Askari, 2017), 

(Pratama et al., 2013), (Antonelli et al., 2011), (Rania and 

Deepa, 2010), (Antonelli et al., 2010), (Beldjehem, 2010), 

(Zhou and Gan, 2008) 0 1 1 0 0 

(Ge et al., 2017), (Antonelli et al., 2016), (Chaudhuri, 2014), 

(Sanz et al., 2012), (Shill et al., 2011) 0 0 0 1 0 

(Dineva et al., 2017) 0 1 1 1 1 

(Tan et al., 2016), (Harandi and Derhami, 2016), (Shill et al., 

2015), (Bouchachia and Vanaret, 2014), (GaneshKumar et 

al., 2014), (Soua et al., 2013), (Samantaray, 2013), (Kumar et 

al., 2013), (Ansari et al., 2013), (Chiu et al., 2012), (Kim et 

al., 2010), (Leng et al., 2009), (Huang and Shen, 2008), (Feng 

and Wong, 2008), (Liu et al., 2007), (Kenesei et al., 2007), 

(González et al., 2007), (Xiong and Funk, 2006), (Kim et al., 

2006), (Zanganeh et al., 2006), (Huang and Shen, 2006), 

(Casillas et al., 2005), (Kim and Ryu, 2005), (Baranyi et al., 

2004), (Kim and Ryu, 2004), (Xiong and Litz, 2002), 

(Guillaume, 2001), (Alcalá et al., 2001), (Rojas et al., 2000), 

(Lu, 1998), (Wang and Langari, 1996), (Castellano and 

Fanelli, 1996), (Wang and Kim, 1995), (Rhee and 

Krishnapuram, 1993) 0 1 0 0 0 

(Lou and Dong, 2012) 1 0 0 0 1 

(Al-Mamun and Zhu, 2010), (Matarazzo and Munda, 2001) 0 0 1 0 1 

(Makrehchi et al., 2003), (Laukonen and Passino, 1995), 

(Takagi et al., 1995) 0 0 0 0 1 

(Xiong, 2001), (Di et al., 2001), (Hsu and Chen, 2000) 0 1 0 0 1 

(Mitaim and Kosko, 2001), (Gil and Hwang, 2000) 1 1 0 0 1 

(Hong and Chen, 1999) 0 1 0 1 0 

This issue has been addressed more intensively in analysed papers since 2010. The forth 

relevant complexity issue in FIS is knowledge representation complexity (CKR) (5) (13 
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of 102 papers). Finally, the last relevant complexity issue is data complexity (DC) (4) (7 

of 102 papers). 

 

Fig. 4. Found complexity issues according to years. 

4.2. FIS quality attributes related to complexity issues (RQ2) 

The main results of our research according to RQ2 are presented in Table 4. It consists 

of one column presenting References of the analysed papers and seventeen columns 

presenting the found FIS quality attributes, which are the following:  

1) Accuracy – the ability to approximate the outcome of the system accurately 

(Liu et al., 2007). Accuracy refers to the capability of the fuzzy model to 

represent the system faithfully (Casillas et al., 2003). 

2) Interpretability – the ability to describe the behaviour of the system in an 

interpretable way (Liu et al., 2007). Interpretability refers to the capability of 

the fuzzy model to express the behaviour of the system in an understandable 

way (Casillas et al., 2003). 

3) Performance – in general definition (Cortellessa et al., 2011), it measures how 

effective is a software system with respect to time constraints and allocation of 

resources. In the analysed papers, a part of authors explicitly mentioned real-

time constraint, like real-time prediction (Lee, 2019), real-time control (Chen et 

al., 2016), online rule learning from real-time data streams ((Bouchachia and 

Vanaret, 2014), etc. 

4) Robustness – as described in (Fernandez et al., 2005), robustness is the ability 

of a computer system to cope with errors during execution and erroneous input. 

In (Fateh, 2010), robustness is verified by performance of tracking error. 

Authors of (Nie and Tan, 2008) evaluated performance and robustness of their 

proposed fuzzy logic controller by changing coefficient values. 

5) Flexibility – as presented in (IEEE Standards Coordinating Committee, 1990), 

flexibility (syn.: adaptability) is the ability of a system to be modified for use in 

applications or environments other than those for which it was specifically 

designed. In (Feng and Wong, 2008), authors understand flexibility in terms of 

turning MFs parameters and fuzzy rules according to the searching space. 

Authors of (Modi et al., 2007) understand flexibility as ability of a fuzzy system 

to form any number of clusters. 

6) Efficiency – the degree to which a system performs its designated functions 

with minimum consumption of resources (Cortellessa et al., 2011). According 
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to authors of (Rajeswari and Deisy, 2019), efficiency refers to cost-effective 

training. In the analysed papers, a number of authors mentioned effectiveness of 

their proposed FIS (see Fig. 5 and Table 4); however, they do not express 

directly what it means. 

7) Stability – authors of (Zhu et al., 2013) investigated the problem of stabilization 

for nonuniform sampling FIS by combining characteristics of sampled-data 

systems with a Lyapunov–Krasovskii function that gives a less complex and 

less conservative stabilization criterion. Fateh (2010) analysed stability for 

fuzzy control of robot manipulators without knowing the explicit dynamics of a 

system. 

8) User-friendliness – refers to ease of use as a primary objective (Cortellessa et 

al., 2011). In (Kóczy and Sugeno, 1996), authors mention that their FIS is user-

friendly. 

9) Transparency – refers to the ability of operating in such a way that it is easy for 

others to see what actions are performed. Authors of (González et al., 2007) and 

(Kenesei et al., 2007) link transparency with interpretability of FIS, i.e., they 

state that fuzzy rules should be transparent in order to stay interpretable FIS. 

10) Compactness – based on (Cortellessa et al., 2011), compactness refers to be 

faster or shorter than the original system. Authors of (GaneshKumar et al., 

2014) state that their proposed hybrid Ant Bee Algorithm generated FIS with 

highly interpretable and compact rules for all the data sets when compared with 

other approaches. In (Kim et al., 2006), authors investigate compactness of 

rules as well.  

11) Adaptability – according to (Cortellessa et al., 2011), it is a synonym of 

flexibility. However, some authors use different terms for the same attribute. 

Therefore, it is left separately. 

12) Integration – authors of (Cortellessa et al., 2011) refers to the combining of 

software components into an overall system. In FIS context, the integration 

refers to the combination of FIS with other approaches, like neural networks 

(Lee, 2019), an adaptive principal component analysis approach (Alaei et al., 

2013), etc. 

13) Self-organizing – according to (Di et al., 2001), adaptation of MFs and self-

organizing of fuzzy rules are realized using self-learning and competitiveness of 

neural network. In (Hsu and Szu, 2003), authors used unsupervised learning 

algorithms, like the self-organizing algorithm, to derive MFs and fuzzy rules. 

Authors of (Rojas et al., 2000) proposed a self-organized fuzzy rule generation 

procedure. 

14) Sensitivity – authors of (Ravi and Khare, 2018) analysed FIS sensitivity 

according to four datasets that refers to data-sensitive fault (Cortellessa et al., 

2011), it is failure in response to some particular pattern of data). In 

(Golestaneh et al., 2018), authors aim to reduce the network complexity by 

reducing the number of linear learning parameters, and this reduces the 

sensitivity of FIS. 

15) Reliability – refers to the ability of a system to perform its required functions 

under stated conditions for a specified period of time (Cortellessa et al., 2011). 

In (Zhou and Gan, 2008), authors named reliability as the main attribute of FIS 

as complex systems to model real-world systems. 

16) Understandability – in (Zhou and Gan, 2008), it is related with reliability of 

complex systems. 
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17) Validity – refers to the evaluation of the proposed approaches at the end of their 

development process to determine whether the system satisfies specified 

requirements, like (Rajeswari and Deisy, 2019), (Dineva et al., 2017), etc. 

Table 4. FIS properties related to the found complexity issues in the secondary set of papers (1 – 

discussed in the abstract, 0 – not mentioned in the abstract). 

 

Reference 1 2 3 4 5 6 7 8 9 
1

0 

1

1 

1

2 

1

3 

1

4 

1

5 

1

6 

1

7 

(Lee, 2019) 0 0 1 0 0 1 0 0 0 0 0 1 0 0 0 0 0 

(Fan et al., 2019) 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

(Marimuthu et al., 2019) 1 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 

(Melin et al., 2019) 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

(Rajeswari and Deisy, 

2019) 
1 0 0 0 0 

1 
0 0 0 0 0 0 0 0 0 0 1 

(Elkano et al., 2018) 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

(Altilio et al., 2018) 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 

(Ravi and Khare, 2018) 1 0 1 0 0 1 0 0 0 0 0 0 0 1 0 0 0 

(Golestaneh et al., 2018) 1 0 1 0 0 1 0 0 0 0 0 0 0 1 0 0 0 

(Zhu et al., 2018) 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

(Askari, 2017) 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

(Dineva et al., 2017) 1 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 1 

(Antonelli et al., 2016) 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 

(Ananthi et al., 2016) 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 

(Tan et al., 2016) 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

(Chen et al., 2016) 1 0 1 0 0 1 0 0 0 0 1 0 0 0 0 0 0 

(Almasi and Rouhani, 

2016) 
1 0 0 0 0 

1 
0 0 0 0 0 0 0 1 0 0 0 

(Harandi and Derhami, 

2016) 
1 0 0 0 0 

0 
0 0 0 0 0 0 0 0 0 0 0 

(Shill et al., 2015) 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 

(Kumbasar and Hagras, 
2015) 

0 0 1 0 0 
0 

0 0 0 0 0 1 0 0 0 0 0 

(Kaur et al., 2015) 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 1 

(Deng and Yao, 2014) 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

(Bouchachia and 
Vanaret, 2014) 

0 0 1 0 0 
0 

0 0 0 0 0 0 0 0 0 0 1 

(Sami et al., 2014) 0 0 1 0 0 1 0 0 0 0 0 0 0 1 0 0 1 

(GaneshKumar et al., 

2014) 
1 1 1 0 0 

0 
0 0 0 1 0 0 0 0 0 0 0 

(Chaudhuri, 2014) 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 

(Ramathilaga et al., 

2014) 
1 0 1 0 0 

1 
0 0 0 0 0 0 0 0 0 0 1 

(Zhu et al., 2013) 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 

(Chakraborty et al., 2013) 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 

(Soua et al., 2013) 1 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 

(Pratama et al., 2013) 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 

(Alaei et al., 2013) 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 

(Kumar et al., 2013) 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 

(Ansari et al., 2013) 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 

(Lou and Dong, 2012) 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 

(Sanz et al., 2012) 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

(Murshid et al., 2012) 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

(Chiu et al., 2012) 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 

(Antonelli et al., 2011a) 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

(Antonelli et al., 2011) 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

(Tamir and Kandel, 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 
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Reference 1 2 3 4 5 6 7 8 9 
1

0 

1

1 

1

2 

1

3 

1

4 

1

5 

1

6 

1

7 

2011) 

(Shill et al., 2011) 0 0 1 0 0 1 0 0 0 0 0 1 0 0 0 0 0 

(Rania and Deepa, 2010) 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

(Kim et al., 2010) 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 

(Antonelli et al, 2010) 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

(Beldjehem, 2010) 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 

(Fateh, 2010) 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 

(Leng et al., 2009) 1 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 

(Choi and Rhee, 2009) 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 

(Starczewski, 2009) 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 

(Lee and Pan, 2009) 1 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 

(Zhou and Gan, 2008) 1 1 0 0 0 0 0 0 0 0 1 0 0 0 1 1 0 

(Nie and Tan, 2008) 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 

(Feng and Wong, 2008) 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 

(Modi et al., 2007) 0 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 

(Liu et al., 2007) 1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 

(Kenesei et al., 2007) 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 

(González et al., 2007) 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 

(Pan et al., 2007) 1 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 

(Kim et al., 2006) 1 0 1 0 0 1 0 0 0 1 0 0 0 0 0 0 0 

(Kim and Ryu, 2006) 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 

(Casillas et al., 2005) 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

(Kim and Ryu, 2005) 1 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 

(Baranyi et al., 2004) 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 

(Kim and Ryu, 2004) 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 

(Hong et al., 2003) 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

(Makrehchi et al., 2003) 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 

(Xiong and Litz, 2002) 0 0 1 0 0 1 0 0 0 1 0 0 0 0 0 0 0 

(Xiong, 2001) 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 

(Mitaim and Kosko, 

2001) 
1 0 0 0 0 

0 
0 0 0 0 0 0 0 0 0 0 0 

(Guillaume, 2001) 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

(Di et al., 2001) 1 0 1 0 0 1 0 0 0 0 1 0 1 0 0 0 0 

(Matarazzo and Munda, 

2001) 
0 0 0 0 0 

0 
0 0 0 0 0 1 0 0 0 0 0 

(Alcalá et al., 2001) 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

(Hsu and Chen, 2000) 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 

(Rojas et al., 2000) 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 

(Gil and Hwang, 2000) 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 

(Hong and Chen, 1999) 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 

(Lu, 1998) 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

(Giachetti and Young, 
1997) 

1 0 0 0 0 
0 

0 0 0 0 0 0 0 0 0 0 0 

(Marinelli et al., 1997) 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

(Kóczy and Sugeno, 

1996) 
0 0 0 0 0 

0 
0 1 1 0 0 0 0 0 0 0 0 

(Castellano and Fanelli, 
1996) 

1 1 0 0 0 
0 

0 0 0 0 0 0 0 0 0 0 0 

(Laukonen and Passino, 

1995) 
1 0 0 0 1 

0 
0 0 0 0 0 0 0 0 0 0 0 

(Bridges et al., 1995) 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 

(Takagi et al., 1995) 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 
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As presented in Table 4, in the secondary set of papers not all authors mention FIS 

quality attributes in their abstracts. Therefore, those papers are excluded from the 

analysis of RQ2. 

The most popular quality attributes found in the analysed papers (see Fig. 5) are the 

following: (3) performance (41 of 102 papers), (1) accuracy (37 of 102 papers), (6) 

efficiency (36 of 102 papers). Other thirteen found quality attributes are not so popular 

in the analysed papers: (2) interpretability (17 of 102 papers), (9) validity (9 of 102 

papers), (11) adaptability (6 of 102 papers), (12) integration (6 of 102 papers), (5) 

flexibility (5 of 102 papers), (10) compactness (5 of 102 papers), (7) stability (4 of 102 

papers), (9) transparency (4 of 102 papers), (14) sensitivity (4 of 102 papers), (4) 

robustness (3 of 102 papers), (13) self-organizing (3 of 102 papers), (16) 

understandability (2 of 102 papers), (8) user-friendliness (1 of 102 papers), and (15) 

reliability (1 of 102 papers). 

 

Fig. 5. Found FIS quality attributes according to years. 

In Fig. 6, the relationship between FIS complexity issues and FIS quality attributes is 

presented. From the figure, we can see the following.  

The computational complexity is related mostly with (3) performance (18 of 102 

papers), (6) efficiency (11 of 102 papers), and (1) accuracy (9 of 102 papers). 

Meanwhile, (2) interpretability, (10) compactness, (13) self-organizing, (15) reliability 

and (16) understandability are not detected in relation with computational complexity. 

Other quality attributes are rarely found.  

The complexity of fuzzy rules is found with (1) accuracy (26 of 102 papers), (6) 

efficiency (14 of 102 papers), (2) interpretability (6 of 102 papers), (3) performance (4 of 

102 papers), and (16) understandability (1 of 102 papers). Other quality attributes have 

not been found in relation with the complexity of fuzzy rules. 



 Complexity in Data-Driven Fuzzy Inference Systems  587 

 

The complexity of MF is related with (1) accuracy (9 of 102 papers), (3) performance 

(7 of 102 papers), (2) interpretability (6 of 102 papers), (6) efficiency (6 of 102 papers) 

and (17) validity (5 of 102 papers). (8) User-friendliness, (9) transparency, and (13) self-

organizing are not mentioned in the relationship with the complexity of MF. Other 

quality attributes are rarely detected in relation with complexity of MF. 

The data complexity is found in relationship with (3) performance (4 of 102 papers), 

(6) efficiency (3 of 102 papers), and (1) accuracy (2 of 102 papers). (4) robustness, (5) 

flexibility, (7) stability, (8) user-friendliness, (10) compactness, (13) self-organizing, 

(14) sensitivity, (15) reliability, and (16) understandability are not found with the data 

complexity. Other quality attributes are rarely found in relation with data complexity. 

 

Fig. 6. Found FIS complexity issues and related FIS quality attributes (Attributes: (1) Accuracy, 

(2) Interpretability, (3) Performance, (4) Robustness, (5) Flexibility, (6) Efficiency, (7) Stability, 

(8) User-friendliness, (9) Transparency, (10) Compactness, (11) Adaptability, (12) Integration, 

(13) Self-organizing, (14) Sensitivity, (15) Reliability, (16) Understandability, (17) Validity; 

Complexity Issues: (1) computational complexity, (2) complexity of fuzzy rules, (3) complexity 

of MF, (4) data complexity, (5) knowledge representation complexity). 

The knowledge representation complexity is mentioned with the following quality 

attributes: (3) performance (7 of 102 papers), (1) accuracy (6 of 102 papers), (6) 

efficiency (5 of 102 papers), and (17) validity (5 of 102 papers). Meanwhile, (5) 

flexibility, (11) adaptability, (13) self-organizing and (14) sensitivity are rarely found, 

and other quality attributes are not mentioned in relation with the knowledge 

representation complexity. 

5. Discussion and conclusions 

Finally, we can summarise the obtained results and answer to the research questions 

RQ1 (What are the complexity issues in FIS?) and RQ2 (Which FIS quality attributes 

are influenced by FIS complexity issues?). 

Based on Table 3, five main issues are extracted from the analysed papers: (1) 

computational complexity, (2) complexity of fuzzy rules, (3) complexity of MF, (4) data 



588  Miliauskaitė and Kalibatiene 

 

complexity, and (5) knowledge representation complexity. Fig. 4 shows that the 

computational complexity (1) and complexity of fuzzy rules (2) were found in the 

analysed papers constantly throughout the analysed years (1993-2019). The complexity 

of MF (3) issue was found together with the computational complexity and complexity 

of fuzzy rules, and its analysis increase has been observed in the papers since 2010. The 

relevance of these issues can be explained by the growth of technologies that generate 

increasing amounts of data. Therefore, the need to develop MFs from large data strings 

that requires high computational power is raised. The data complexity (4) issue becomes 

relevant since 2011. Its relevance can be explained by the emergence of big data, 

unstructured data and data-driven approach, and their usage in FIS. The knowledge 

representation complexity issue is weakly expressed directly. It is analysed in tandem 

with other issues, especially with the complexity of fuzzy rules, since it is recognized 

that rules are suitable to represent knowledge. 

The complexity issues influence the following FIS quality attributes (RQ2): (1) 

accuracy, (2) interpretability, (3) performance, (4) robustness, (5) flexibility, (6) 

efficiency, (7) stability, (8) user-friendliness, (9) transparency, (10) compactness, (11) 

adaptability, (12) integration, (13) self-organizing, (14) sensitivity, (15) reliability, (16) 

understandability, and (17) validity. The most popular found quality attributes are the 

following: (3) performance, (1) accuracy, (6) efficiency, and (2) interpretability. Based 

on the founding we can conclude that FIS should perform effectively (i.e., produce the 

accurate outcome in an understandable and interpretable way) with respect to time 

constraints and allocation of resources. Other quality attributes are also important in FIS; 

however, not all authors say that directly, since the attributes vary according to the 

application domain and the problem being solved. Therefore, such quality attributes, as 

self-organizing, user-friendliness, etc., are more important in specific domains, like FIS 

integration with machine learning, etc. 

The analysis of the relationship among complexity issues in FIS and FIS quality 

attributes shows that some FIS quality attributes are significantly influenced by 

complexity issues in FIS, as the following: 1) the computational complexity influences 

performance, efficiency and accuracy; 2) the complexity of fuzzy rules is related to 

accuracy, efficiency and interpretability; 3) the complexity of MF is related to accuracy, 

performance, interpretability, efficiency and validity; 4) the data complexity is related to 

performance, efficiency and accuracy; 5) the knowledge representation complexity is 

related to performance, accuracy, efficiency and validity. Other FIS quality attributes are 

less significant in the analysed papers. This could be an indicator that some quality 

attributes might be suitable in a certain FIS context only. This may need further 

investigation. 

Summing up, in this paper we have presented the analysis of the complexity issues 

found in data-driven fuzzy inference systems (FIS). We have statistically described and 

discussed the found complexity issues in FIS. Moreover, FIS quality attributes related to 

the found complexity issues were observed in order to determine the relationship among 

them. 

5.1. Future works 

The proposed set of complexity issues in FIS is a first step toward the deeper 

understanding of the complexity of FIS, which can be extended applying root cause 

analysis technique. It constitutes a basis for discussion and for subsequent work in 
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finding origins of complexity issues of FIS. Moreover, in the future research, we plan to 

develop a framework of complexity issues of FIS and their possible solutions. 

According to the obtained results and identified future works, the need for 

automation of FIS development with the possibility to choose different levels of 

complexity of FIS arises. Since different domains require different FIS regarding quality 

attribute values, FIS of varying complexity levels is obtained as a final result. Moreover, 

developing FIS of particular complexity is a multi-criteria decision-making task since 

consensus among FIS quality attributes should be obtained. 
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