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Abstract. A new approach to Deep Learning (DL) lifecycle data management tool support is 

presented: a very simple DL lifecycle data management tool, which however is usable in practice 

(it will be called Core tool) and a very advanced extension mechanism for this Core tool which in 

fact converts the Core tool into a DSL tool building framework for DL lifecycle data management 

tasks. The extension mechanism is based on the metamodel specialisation approach to Domain 

Specific Language (DSL) modelling tools introduced by the authors. The main idea of metamodel 

specialisation is that we first define the Universal Metamodel (UMM) for a domain and then for 

each use case in the domain define a Specialised Metamodel (SMM). The paper concludes with a 

detailed description of future research directions, concerned with defining a more general UMM 

and its usage. 
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1. Introduction 

This paper is an extended version of the Baltic DB&IS 2020 paper (Celms et al., 2020). 

As in (Celms et al., 2020) we start with a description of the problem to be studied. 

The Deep Learning process is long and tedious. It has many parameters, data, code 

versions, and more to keep track of during the many runs of training and model 

development. All this emphasizes the need for effective training lifecycle data 

management. Currently there already exist several systems for supporting this process. 

We will explore them in more detail in the following section; here we only note that for 

different Deep Learning (DL) tasks support requirements may vary greatly. Due to this 

aspect the existing DL lifecycle data management systems cover either a very small part 

of these requirements or become excessively complicated in order to cover as large as 

possible part of the requirements. 
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We borrow the conclusion arrived at in the system modelling area in similar 

circumstances – try a Domain Specific Language (DSL) approach to DL lifecycle data 

management.  

The goal of this paper is to deeper investigate the DSL approach in this area and offer 

a possible solution for the DL lifecycle data management problem. The solution consists 

of two parts: 

1. A very simple DL lifecycle data management tool, which however is usable 

in practice (in what follows it will be called Core tool); 

2. Advanced extension mechanism for this Core tool which in fact converts the 

Core tool into a DSL tool building framework for DL lifecycle data 

management tasks. 

When combined these two parts deliver the ability to create custom tools for specific 

DL tasks, without unnecessary bloat but with all the specific functionalities the user 

deems needed. 

2. Related work  

Machine learning has a complex lifecycle consisting of many phases and steps, from the 

preparation of the training and test data; via model development and training; to testing 

and, finally, deployment. Although the Machine Learning libraries themselves (like 

Scikit-Learn, Tensorflow, PyTorch, etc.) have already matured in the last few years, the 

pipeline around them and the corresponding tool landscape is still in development and is 

very fragmented. Each of the tools covers one or several aspects of model development, 

and for a complete pipeline you may need to select a whole rainbow of tools to then be 

combined. Current state of the art tools are many and varied, each with its own focus. 

There are tools in the landscape which orchestrate ML workflows in the cloud 

(Bisong, 2019; WEB, a; WEB, b). Other tools like (WEB, c) extend the workflow 

orchestration with data warehouse integration, state transfer and meta-training. However, 

they do not provide any means for monitoring the training and propose to use Jupyter 

notebooks for this purpose. 

Some tools like DVC (WEB, d) focus on version and dependency management for 

the data artefacts and models, but they do not track the experiments themselves. 

One of the most important phases in ML is model development and training. Some 

tools (e.g. AutoKeras (Haifeng et al., 2019)) try to automate this phase providing means 

for automatic exploration of hyperparameter space and selection of the best parameter 

values for the given problem and training data as well as with selecting the best 

architecture for the model, making the ML available for non-ML experts. In some cases, 

these tools abstract the developer from directly running the ML experiments. 

However, these techniques are not mature enough yet, and, in many cases, 

developers still have to run the machine learning experiments manually. This involves 

iterative running of experiments in search for the best model architecture and for the best 

hyper-parameters. Natural requirements here are the ability to track, compare and 

reproduce the experiments. Good tool support is essential for development productivity. 

To this goal these tools (WEB, e; WEB, f; WEB, g; WEB, h; WEB, i; WEB, j; WEB, k) 

provide a set of library functions for augmenting the training program with a tracking 

functionality. A natural counterpart then is a tool for visualisation and result comparison. 
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Some of the tools concentrate on the tracking functionality, and their support for 

visualization of ML experiments is limited (WEB, e; WEB, f), or they provide a 

command line interface for experiment comparison (WEB, l). Other tools (WEB, k) rely 

on complementary tools (e.g. (WEB, m)) for experiment visualization.  

However, most tools have been built with support for visualization and comparison 

of experiment metrics, usually as a dashboard containing tables and sometimes charts. 

There are cloud-based solutions (WEB, g; WEB, h), closest to ours being 

Weights&Biases (WEB, g), both commercially closed projects. They are built to support 

visualisation and comparison of experiment metrics, as a dashboard containing tables 

and charts. Unfortunately, users are limited to the visualisations provided, and though 

there are many, if something is missing the tool cannot be extended. You also can’t add 

semantics to role names of logged content, meaning unless the tool has built in support 

for it, you can’t have data depictions be determined by the type of data you’re logging. 

What you end up with is a tool that tries to be all encompassing, but for most real tasks 

ends up having tons of unused functionality while not meeting all of your needs. 

Open source tools like (WEB, i; WEB, j) can be extended, but such an extension, 

besides direct development of the required software, requires deep understanding of the 

existing software and, especially, the data structures used in it. What’s missing is an 

easily usable extension possibility, for adapting to a specific deep learning task domain. 

This situation becomes very similar to the one in the system modelling area. There the 

Universal Modelling Language (UML) was developed and naturally this language was 

very complicated. Typically for any real tasks a very small subset of these many 

possibilities was applicable, while at the same time something was missing for tasks in 

the given domain. 

Besides that, in real application domains there is a desire to obtain software 

implementation from the chosen language automatically. As a result, the idea of Domain 

Specific Languages and tools developed rapidly. Required was not a single universal 

tool, but a DSL tool building framework. By using such a platform an expert of the 

given problem domain could relatively easily build the required tool themselves. 

A question then arises: could a Domain Specific language approach not be applied 

to the deep learning lifecycle data management area as well? 

In other words, no complicated universal tool, instead a DSL tool building 

framework, where the Deep learning domain expert themselves can build a tool for their 

specific needs. 

3. DL lifecycle data management framework: general structure 

The general structure and use of our framework is split amongst three “machines”, 

though they need not be separate physically (see Fig. 1): 

 The Data Server – which hosts the tool and contains the database and all the 

files; 

 The Workstation – a machine that wants to use our tool to track experiments 

run on it; 

 Any Machine via web access – the way to access the platform to view the 

tracked information. 
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The framework itself consists of two components: 

1. Core platform, which includes:  

a. Core tool which works on the Data Server;  

b. Core library which is placed on the Workstation. 

2. Core extension mechanism which ensures the creation of the DSL tool for 

the given DL lifecycle data management scenario.  

 

 
Fig. 1. General structure of LDM framework. 

The Core tool is a simple but usable DL lifecycle data management tool. Website 

access lets you log in and then create and view projects. For each project you can upload 

training and test data, view your runs of the training program, under each seeing your 

logged hyper-parameters, gold and guessed captions, or whatever other string value you 

might want to log. You can also access uploaded images and graphs, checkpoints and 

code versions for recoverable progress. All the logs and files come from code augmented 

with the Core library tracking commands. All this is just the minimalistic base version. 

The Core library is installed on the workstation. It consists of five possible messages 

that can be sent to the Data Server: 

1. Login – to send your username and password so the Core tool knows to give 

access to your projects;  

2. StartRun – to note that a new run has started, for the Core tool to know how 

to split and organise the logs and files sent;  

3. Log – for sending String messages to the Core tool, which are then 

processed by the tool in accordance to the co-sent roleName;  

4. UploadFile – for sending files to the Core tool, these can be anything 

ranging from images through graphs to whole code files, later accessible 

through the web access to the tool;  

5. FinishRun – to tell the Core tool that a run has finished, useful for seeing 

that a run hasn’t failed midway, gives ability to note how long the run took.  

The Core Platform extension mechanism is the main contribution. It takes the basic 

Core tool, and allows the user to extend it into a specialised and as excessive as need be 
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tool, that perfectly fits the specific DL scenario. It works through revealing some of the 

inner structure at a consumable level, so the user doesn’t have to familiarise with the 

whole code – like an API. Then the user can program any functionality they wish, while 

having access to all the structured data sent from the Workstation and saved on the Data 

Server.  

4. End user view 

When using the web access, you are met with the page seen below (Fig. 2). First you are 

required to log in using your username and password, then you gain access to all of your 

projects as well as the ability to create new ones. Under each project you can see some 

information on it, upload or download training and test data, as well as see all the runs. 

 

 
Fig. 2. Web view of Core tool 

For the training and test data, when first adding them they have to be uploaded as zip 

files (using the upload button provided, circled red). These zip files will then be stored in 

the repository shown later in the paper (Fig. 8) in the folder TrainTestData. The 

unzipped folders are to be stored in the same repository folder and will have the same 

name as the corresponding zip file. In the case where the training and / or test data are 

already stored in the folder (i.e. they were manually placed in the repository folder 

before) the upload button should not be used, instead in the corresponding training and / 

or test data field the name of the folder should be entered. 

The training and test data will still likely need to be stored locally as well for the DL 

expert running the experiments on the Workstation, but having them stored on the Data 
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Server allows for easy migration between Workstations or for other teammates to 

download the latest code, datasets, and checkpoints and be able to run and view the latest 

version of your project. 

Moving on to the runs, under the project view you can see all of them listed with 

some basic information on them (runID, start and end time, IP and name of user that 

initiated it). Each of the runs can be clicked to display the run details. These extend the 

basic information with logged messages and uploaded files from the run. These are 

textual logs and files of any type uploaded from the Workstation during the run by 

augmenting the code with provided library functions. The available library functions are: 

 
login(user_id, psw): a trial to authorize the user with 

user_ID using the password psw, in case of success 

returns the token_id 

startRun(project_name): start new run in the project 

project_name 

log(msg,role_name): store on DS the message msg and the 

corresponding role_name in the current run 

uploadFile(file_name, role_name): upload the file file_name 

and the corresponding role_name in the current run 

finishRun(): finish the current run 

 

From a higher abstraction level, we can say that by means of these functions the 

Workstation sends the following messages (shown in Fig. 3) to the Data Server. 

 

 
Fig. 3. Class diagram of messages. 

“//” before the attribute name means that the value of this attribute is inserted by the 

Core library. “/” before the attribute name means that the value of this attribute is not 

sent from the Workstation but generated by the Core platform upon message reception. 

The library is very user friendly as login and startRun both need to be called only 

once at the very start of the program, similarly finishRun is only called once at the very 

end. The rest of the time the user only has to use log and uploadFile – one for sending 

String (textual) messages to the Data Server, the other for sending files. 

The first of the library functions that the user has to call is login. As parameters it is 

given the user ID and password. Same as how it is on the web access, you first have to 

log in before being given access to edit the projects. 

Then comes the startRun function. As parameter it is given the name of the project 

that you are currently running. This also notes down the time that is later displayed in the 

run info, as well as used for the calculation of total run time. 

Now follows the main body of the user’s code, within which only the log and 

uploadFile functions are used. The log function can be used quickly and constantly for 

saving small values that might be useful to remember. These can range from more 

abstract run wide logs like “run type” for noting whether this is a training or testing run, 
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to very narrow and detailed ones like seed used for selecting 10 random images from the 

testing set to be displayed. The only thing the user has to remember to do is add a 

suitable roleName for the logged value. This can be anything user chosen, but it has to 

stay consistent if later extension functionalities are to work, so if there were to be 

multiple DL experts working with the code, they would have to agree amongst 

themselves to be consistent with role names. The uploadFile function is very similar, a 

slight difference user experience wise is that a file does have to be created for whatever 

you might want to upload (experience wise different to log where any variable value can 

be cast to String and sent with ease). Although often some files will be created anyway 

in the user’s workflow already (the current code version, checkpoint files used for saving 

progress, etc.). However, to use the tool’s full functionalities now and later, the user 

might want to create and upload some more abstract files, that might only become useful 

once the extension mechanism is used. Examples might be uploading images or graphs 

that the user might usually view only in their Jupyter notebook. Uploading them means 

that their teammates or end users have easy access to these as well. More abstract 

examples might be uploading files containing many abstract values from the run; this 

might be done instead of logging them all to allow a later extension to display them in a 

user-friendly way, instead of simply being listed. 

At the very end the user is only left to call finishRun, that doesn’t take any 

parameters and simply signals to the Data Server that the run has ended; the end time is 

now noted and can be displayed (as well as total run time calculated). There can be cases 

where the program fails mid-run, resulting in a scenario where the finish run is never 

sent (unless the user has appropriate error catching in place). In these cases, the run 

simply displays no end time, but the run can be viewed all the same. 

In the conclusion of this section we note that the information already presented is 

more or less adequate for a simple Workstation user to start using the Core platform 

seriously: to extend their DL program in Python with Core library function calls for 

sending data to Data Server as well as for downloading files from Data Server to their 

Workstation, e.g. Code or Checkpoint from an earlier Run. Such file download is 

planned to be done via the web page (see Fig. 2) using the traditional web browser 

facilities – open the web page on their Workstation and download the reachable from 

this page files via the Save As option. 

Let us remind you that the time-consuming DL process occurs exclusively on the 

Workstation and the Data Server is only used for relatively infrequent storing of training 

results. 

5. Inner structure 

We start here with the presentation of the Logical Metamodel for this platform in the 

form of a class diagram (see Fig. 4). We will call this model the Core Logical MM. In 

this MM and others following the slash symbol before the attribute name marks that 

those values are set by the Core platform itself. The values of other attributes come from 

the messages sent by the Workstation (or are directly entered via the relevant web page, 

e.g. project name for a new project). 

Now about the semantics of this MM. Class and attribute names already explain the 

semantics to a great degree. We only note that instances of the Run class (together with 

classes LoggedMessage and UploadedFile) mean the information sent to the Data server 

from Workstation during the training run. 
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We assume that the neural network training process consists of many runs. In 

addition, the neural net and code itself may be modified between consecutive runs.  

 
Fig. 4. The Core Logical MM. 

To clarify this situation Fig. 5 presents an instance of this MM which corresponds to 

two training runs. 

 

 
Fig. 5. Instance of Core Logical MM representing two runs. 

Fig. 6 shows the same instance in the form of web pages that should now seem 

familiar, which should be built by our offered Core platform. 



 DSL approach to deep learning lifecycle data management 605 

 

 

 
Fig. 6. Instance shown as web pages. 

6. Core platform extension mechanism: basic ideas 

The biggest contribution of this project is the extension mechanism. There are two ways 

to allow extension: 

1. Reveal the Core tool code – this is complicated for the user as they have to 

familiarise with too much information; 

2. Reveal only some necessary parts that are easily understandable, while still 

giving enough knowledge of the tool internals for extension. 

The first thing we reveal is the Core Logical MM (Fig. 4.). It shows the structure of 

data within the tool. Physical representation of data corresponding to the Core Logical 

MM is done via two complementary facilities, the structures of which are the other two 

parts we are revealing: 

a. The Logical MM and its instances are stored in Mongo DB according to the 

structure shown in Fig. 7 (ProjectID and RunID are generated 

automatically); 

b. The files themselves (including the Core platform software) are stored in the 

Data server file system according to the repository shown in Fig. 8. 
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db.createCollection(“project”) 

db.project.insertOne({projectId:597384, projectNo:1, 

projectName:”name1”, … }) 

db.project.insertOne({projectId:634547, projectNo:2, 

projectName:”name2”, … }) 

db.createCollection(“run”) 

db.run.insertOne({runId:378257, projectId:597384, 

runNo:1, … }) 

db.run.insertOne({runId:868349, projectId:597384, 

runNo:2, … }) 

db.createCollection(“loggedMessages”) 

db.loggedMessages.insertOne({runId:378257, 

roleName:”rt”, msg:”test”}) 

db.loggedMessages.insertOne({runId: 378257, roleName: 

“el”, msg:”1/0.4”}) 

db.createCollection(“uploadedFilesPoint”) 

db.uploadedFilesPoint.insertOne({runId: 378257, 

roleName:”code”, fileName:”…” …})  … … … 

db.createCollection(“trainingDataPoint”) 

db.trainingDataPoint.insertOne({projectId:597384, 

filename:”Train1.zip”, fileType:”zip”, fileLocation: 

”ROOT\TrainTestData”}) … … … 

Fig. 7. Mongo DB presentation of the given instance. 

 
Fig. 8. Repository structure 
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Now some comments on this structure. LogPlatform is the root folder of this 

structure. In this folder the Core platform software is stored. For instance, the full 

address of this folder could be C:\Programs\LogPlatform. This address will be denoted 

by ROOT.As a result the full name of folder Proj1 would be ROOT\Projects\Proj1. 

The opening of Core platform internals mentioned above is sufficient for our offered 

extension mechanism. 

7. Extension mechanism: our specialisation approach 

The proposed extension mechanism will, to a great degree, be based on the metamodel 

specialisation approach to DSL modeling tools introduced by authors (Barzdins et al., 

2009; Sprogis and Barzdins, 2012; Kalnins and Barzdins, 2016; Kalnins and Barzdins, 

2019). The main idea of metamodel specialisation is that we at first define the Universal 

Metamodel (UMM) for a domain and then for each use case in this domain define a 

Specialised Metamodel (SMM). The SMM contains a set of subclasses of the UMM's 

classes, as many as we need. The subclasses are defined according to UML rules, but 

with some restrictions. Class attributes may be assigned with new fixed values, but new 

attributes may not be added. Similarly, for associations the role names may be redefined 

(subset) and multiplicities may be changed (shrunk). In our new domain we also allow 

attribute names and types to be redefined. We illustrate all this on a very simple example 

from a workflow domain. This example is taken from our paper (Kalnins and Barzdins, 

2019), but slightly extended to also show our new specialisation features. Fig. 9 shows 

the UMM for this workflow. 

 

 
Fig. 9. UMM for simple workflow. 

Fig. 10 shows a specialisation of this UMM for business trip workflow in an 

enterprise in a standard UML notation. Similar to (Kalnins and Barzdins, 2019), in order 

to make diagrams more compact and readable, we use a custom notation for 

specialisation (only slightly extended with respect to (Kalnins and Barzdins, 2019)).  

 

 
Fig. 10. Workflow specialisation in standard UML notation. 

This notation uses the super-object (class, attribute or association) name in braces to 

reference it in the sub-object. See this notation for business trip in Fig. 11. In the general 

case not all UMM classes may be specialised. In order to define which UMM classes 
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may be specialised we show their class names in italic (in our example these classes are 

Process and Action). 

 

 
Fig. 11. Custom notation for Business Trip specialisation. 

Now the main new idea in this paper. In comparison with the paper (Kalnins and 

Barzdins, 2019) the specialisation concept itself will be extended. In (Kalnins and 

Barzdins, 2019) it was assumed that the semantics of specialised classes are directly 

determined by their attribute values or a default attribute values set. We will call such 

specialisation a simple specialisation. But in this paper, we need a broader specialisation 

concept where the semantics are determined by some additional information as well. 

Such specialisation will be called functional specialisation. In our domain we will use 

true custom extension of the Core tool functionality specially adapted for the given DL 

use case by means of invoking an additional custom program at appropriate points of the 

Core tool functioning. The functional specialisation defines how such custom programs 

can be found. Both simple and functional specialisation will be used in this paper. 

 
Fig. 12. Universal metamodel (extended Core Logical MM). 
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We start the definition of our extension mechanism by extending the Core Logical 

MM with new classes called extension classes (their names are shown in italic font). The 

extended MM is shown in Fig. 12, further on we will call it the Universal Metamodel 

(UMM). As Fig. 12 shows, there are two kinds of extension classes corresponding to two 

kinds of extensions supported by our LDM framework: 

 Sense classes: LiteralWithGeneralSense, LiteralWithSlashPairSense, 

FileWithSensePointer  

 Custom tab classes: CustomProjectTab and CustomRunTab 

The LDM framework we offer is based on the idea that by means of specialisation of 

the mentioned extension classes we will define concrete DL lifecycle data management 

tools (called DL DSL tools) which provide new additional possibilities in comparison 

with the Core platform. 

 

Now let us explain this idea in a greater detail. 

For sense classes we will apply simple specialisation – see classes RunType and 

others coloured light blue in Fig. 13. 

However, the main heavyweight DL DSL tool building facility is the specialization 

of custom tab classes. For these classes we will apply the functional specialisation. 

These classes have an attribute progrName, which after specialisation must point to an 

independent executable program, also called an Extension program. This program should 

be inserted in the repository, shown in Fig. 8. This means that simultaneously with 

defining a specialised tab class we have to build the corresponding extension program. 

Namely due to this reason we need the above described opening of the internals of the 

Core platform. We note that our UMM also includes the File system MM. Its 

specialisation will be used to describe more precisely the source data for extension 

program building. We also have to add two more details on extension programs: 

 Any extension program has just one parameter. Its value in the 

corresponding extension call will be the corresponding projectID value (in 

the case of Custom Project Tab) or the corresponding runID value (in the 

case of Custom Run Tab). 

 Any extension program call will open a new web page presenting the result 

of this program execution (e.g. Loss graph). 

8. Extension example explanation 

Now let us go to the explanation of Fig. 13 presenting one concrete specialisation of the 

UMM. This specialisation defines a concrete DL DSL tool. 

First, let us stress that our extension mechanism (via the extension class 

specialisation) refers only to additional features of Data Server (DS) which permit to 

view in a more understandable way the information sent by Workstation to Data Server 

(in comparison with the bare Core platform). The custom tabs permit to view this 

information in a completely new format, e.g. in the form of various graphs. For this 

explanation we assume that from a Workstation to Data Server the same messages have 

been sent as in the example mentioned in Section 4 (see the Fig. 5). According to the 

Fig. 5 the following message roles are used: acc, rt, lp for ordinary messages; and code, 
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chp, silver for files. The semantics of these roles are, to a great degree, explained by 

sufficiently expressive names of specialised classes used in Fig. 13: Accuracy, RunType, 

LossPairs, Code, Checkpoint and SilverCaptions. Further explanation is needed for the 

class LossPairs and its parent class LiteralWithSlashPairsSense: the attribute msg of this 

class is used to code message pairs (first, second) separated by the slash character. For 

example, if msg=”25/0.95”, then first =25 and second =0.95.  At defining the class 

LossPairs, the first is renamed to epochNo and second to loss (such a redefinition is 

permitted at class specialisation). 

 

 
 

Fig. 13. One concrete specialisation of the UMM. 

 

The results of this specialisation are illustrated in Fig. 14 where the Run Details web 

page is presented. The first difference from Fig. 8 where the corresponding web page is 

also visible is such that the messages sent to DS are grouped according to the specialised 

classes and thus have become more understandable (in addition also the possibilities 

related to LiteralWithSlashPairSense). 

Now let us discuss the Custom tabs. Fig. 13 shows three Custom tabs: AccuracyGr, 

LossGr and GoldSilver, the first is a specialisation of CustomProjectTab, the remaining 

two are specialisations of CustomRunTab. As already mentioned, the feature there is the 

extension program: in the case of AccuracyGr it is a program with the name tab3.py, in 

the case of LossGr it is a program with the name tab2.py, but in the case of GoldSilver it 

is a program with name tab1.py. 
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PROJECTS
Configuration Files

Create New Project

projNo : 1
projID : 597384
projName : name1
projType : captioning
projAuthor : auth1
lastUpdate : . . .
numRuns : . . . 

projNo : 2
projID : 634547
projName : name2
projType : 
projAuthor : auth2
lastUpdate : . . .
numRuns : . . . 

PROJECT DETAILS

projNo : 1
projID : 597384
projName : name1
projType : captioning
projDescription : . . .
projAuthor : auth1
TrainingData : 
TestingData : 
ProjRuns: 

# RunID Start End UserIP UserName

1 378257 . . . . . . . . . user1

2 868349 user2

ProjName :
ProjType : 
ProjDescription : 

OK

RUN DETAILS

GoldSilverCustomRunTabs : LossGr

CustomProjectTab :

UserName :
Password:

OK

projNo : 1
projID : 378257
Start : . . .
End: . . .
UserIP: . . . 
UserName : user1
LOGGED MESSAGES :
RunType (role = rt):

test
LossPairs (role = el):

1/0.4, 2/0.5, 3/0.5, more
Accuracy (role = acc):

0.95
LOGGED FILES :
Code (role = code):
fileName= ...py, uploadTime=...

Checkpoints (role = chp):
fileName= ..., uploadTime=...
fileName= ..., uploadTime=...
more

SilverCaptions (role = silver):
fileName= ...json, uploadTime=...

AccuracyGr

 

Fig. 14. The result of specialisation as a web page. 

Now let us explain what these programs are doing. The program tab3.py when 

invoked with a parameter value equal to the projID generates a web page for the given 

Project instance containing an Accuracy graph from the AccuracyPairs (runNo, 

accuracy). In this graph runNo is mapped on the x-axis, accuracyValue on the y-axis. 

The program tab2.py for the given Run instance (when invoked with the parameter value 

equal to the runID of this instance) generates a web page with a Loss graph from the 

LossPairs instances related to the given Run instance. In this graph epochNo is mapped 

on the x-axis, but lossValue on the y-axis. The program tab1.py performs a slightly more 

complicated action. This program (invoked with runID value of a Run instance) finds the 

corresponding RunType instance and if its msg attribute value is equal to “test”, 

generates a web page which for the corresponding TestingData contains the table 

visualized in Fig. 15. For this purpose this program first uses the folder TestingData 

visible in Fig. 13. This folder in turn contains the Images folder and the GoldCaptions 

file. Secondly, this program finds the SilverCaptions file corresponding to this Run 

instance. 
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IMAGE GOLD SILVER 

 

three men 

fishing 

a man is 

riding a boat 

 

Riga city 

skyline 

a city filled 

with lots of 

buildings 

 

cars standing 

in traffic 

a car is parked 

on a street 

... … … … … … … … … ... … 

Fig. 15. Results of the GoldSilver extension program execution. 

Had our example more Custom tabs, they should be explained as well and our 

memorandum would be longer. Now on the topic where these Custom tabs are visible in 

the Data Server website and how to invoke them. Let us look at Fig. 14. There we see 

that Custom Run tabs are visible in the Run Details web page, but Custom Project tabs in 

the Project Details web page. By clicking on these tabs, the following Core platform 

action occurs: the corresponding ID value is found (in the case of Run it is runID, in the 

case of Project it is projID). Then the extension program corresponding to this tab is 

invoked with the selected ID value as the input parameter. As it was mentioned above, 

program execution result is to show the corresponding web page. 

9. DSL memorandum and configuration 

Before proceeding we want to stress the following aspect: our DL DSL framework is 

related to the following 4 human actors: 

1. Framework developer 

2. DSL tool configurator/developer 

3. DSL tool user, i.e. DL programmer at a Workstation 

4. End user, e.g. LETA data expert 

       The DSL tool developer is the actor who performs the corresponding UMM class 

specialisation and, if required, develops the corresponding extension programs and 

places these programs in executable form on Data Server in the repository shown in Fig. 

8. Beforehand however the tool developer has to perform one more job – together with 

the DSL tool users fix the list of permitted role names and the semantics of these roles 

for messages to be sent from a Workstation to the Data server. Together with the role list 

it is also necessary to agree on the structure of messages corresponding to these roles, 

including the files to be uploaded. The agreement on the file structure should be 

sufficient for developing the corresponding extension programs. Such an agreement for a 

DSL will be called a DSL memorandum. Let us stress once more that such a 

memorandum stands outside of the formalism used by us (the above-mentioned file 

structure MM only helps in writing such a memorandum). In fact, there is a need for 
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such a memorandum for the development of any DSL tool, e.g. to explain in natural 

language the semantics of used DSL symbols (but it is not referred to so formally). In 

our case the agreement covers a wider area and therefore we use such a term. 

Finally, how the Core platform knows which tabs must be shown in the given web 

page and what values must be passed as parameters. For this purpose a special 

configuration tab named Configuration is placed in the PROJECTS page. By clicking on 

the Configuration tab, the page visible in Fig. 16 is opened.  

 
Fig. 16. Tables in the web page opened via Configuration tab. 

By executing the actions visible in this page (i.e. by filling in the corresponding 

tables) we pass to the Core platform all the required information – both for sense class 

specialisation and custom tab definition. In other words, we pass to the Core platform the 

information that the UMM specialisation of your DL DSL tool would contain, for 

example the information contained in Fig. 13. 

Now briefly about the Core platform implementation. The implementation of the 

“bare” Core platform is quite straightforward: the Core Logical MM is stored in the 

Mongo DB (see Fig. 7), but the corresponding files are stored in the file system 

according to Fig. 8. Then follows a resource demanding, but quite simple from the 

logical point of view programming of the used web pages. Certain comments are 

required on the Extended Core platform implementation, which ensures the described 

Extension mechanism. In order to make the use of the Extension mechanism simpler, we 

Literal name:
Role name:

OK

PROJECTS
Configuration Files

CONFIGURATION DETAILS

LitWithGenSense
. . . . . . . .

CONFIGURATIONS
CreateNewConfiguration

# ConfigID ConfigName Author
(UserName)

Comment

1 598959 Config1 user1 . . .

2 . . . . . . . . . . . .

# LiteralName RoleName

1 runType rt

2 accuracy acc

LitWithSlPairSense

CustomProjTab CustomRunTab FileWithSense

LiteralWithGeneralSense:

# LiteralName RoleName First Second

1 LossPairs el epochNo loss

… . . . . . . . . . . . .

LiteralWithSlashPairSense:

FileWithSense:

CustomRunTabs:

CustomProjectTabs:

# FileName RoleName

1 Code code

2 Checkpoints chp

3 Silver captions silver

# TabName ProgramName Comment

1 GoldSilver tab1.py . . .

2 LossGr tab2.py . . .

# TabName ProgramName Comment

1 . . . . . . . . .

FILES
Upload

# FileName

1 Train1.zip

2 Train2.zip

3 Test1.zip

Literal name:
Role name:
First name:
Second name:

OK

File name:
Role name:

OK

Tab name:
Program name:
Comment: 

OK

Config name:
Comment:

OK
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will use not the code generation method (as it is typically done for building traditional 

DSL tools), but an interpretation method. Namely the information entered via the 

Configuration tool (the tables visible in Fig. 16) is directly stored in the Mongo DB and 

further, when a request for a web view appears, this view is generated from the “bare” 

Core information and modified in the interpretation mode according to the entered 

configuration information. 

10.  Future research  

As was mentioned before, our approach to DL DSL is based on metamodel 

specialisation. In this paper two kinds of specialisation are used – simple and functional. 

Functional specialisation provides the possibility to define a very broad spectrum of DL 

DSL extensions. However, functional specialisation requires non-trivial programming 

from the specialisation developer. A natural question appears – whether the UMM could 

be extended in a way that for graphical visualisations of training progress no additional 

programming would be required and simple specialisation would be sufficient. Our 

future research direction will be based on searching for such kind of UMMs. 

In the following parts of this section we will sketch out an idea for implementing this 

goal. It will be for defining a Run tab representing simple graphs, without any additional 

programming. Such graphs are important for graphically representing the increase in 

training result quality. In previous sections there were two such tabs, showing Loss and 

Accuracy graphs. We will use the concept line graph – it will be a graphical 

representation of two-column tables. An example of such a table is shown in Fig. 17.  

 

 
Fig. 17. Two-column representation of data. 

 
Fig. 18. A line graph of Fig. 17. data. 

x
1
2
3
4
5

y
0.5
0.7
nil
nil
0.9

xElements yElements
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The graph representing this table is shown in Fig. 18. Some y-column values may be 

missing – they have a value of nil. 

From the viewpoint of UMM+ (our take on an extended UMM), we will identify 

such graphs as two-column tables. Such a two-column table can be understood as two 

lists – one for the x-column and on for the y-column; see this in Fig. 19.  

For the specialisation of UMM+ we will also use OCL navigation expressions 

(OMG, 2014). Now in Fig. 20 we will show an example of UMM+ specialisation where 

Project tab "Accuracy" is defined completely without any use of custom programs. In 

Fig. 19 an extension of UMM+ is visible where the previously used Custom Project Tab 

(see modified Fig. 13) is split into two subclasses – Custom Functional Project Tab and 

Custom Graph Project Tab, where the second one is a simple specialisation. The Graph 

Tab has associations to two classes – xElement and yElement. Both associations are 

ordered at the target end. The extended UMM+ contains simple OCL expressions. 

 

 
Fig. 19. An extension of the previous UMM. 

Accuracy Graph is a subclass of Graph Project Tab. xElement is specialised to 

RunNo (Run Number) and yElement to Accur (Accuracy at the end of this run). Each of 

these classes has one attribute – the corresponding value. OCL expressions are used in 

the superclass to specify these attribute values – {self.RunNo.value = 

self.Project.RunNo} and {self.Accur.value = self.Project.Run.Accuracy.msg}. We 

assume that UE (Universal Engine which interprets the SMM, see (Kalnins and 

Barzdins, 2019)) understands such OCL expressions, so nothing has to be specially 

programmed. 

Thus, we have sketched one idea for future research. This idea can certainly be 

extended in various ways. One is the most natural – to support various more advanced 

graphical representation styles. First, we may want to define the colour of the graph in 

the specialisation – red, blue etc. Further, we could have several graphs for representing 

advances in the training process – like we have the Accuracy and Loss graph. In fact, 
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there are two accuracies showing training advances – training Accuracy (discussed here) 

and validation or testing result Accuracy.  

 

 
Fig. 20. An example specialisation of the UMM+. 

We may want to show several graphs in the same visual presentation, differentiated 

by graph colour. All these options seem realistic to define via UMM specialisation 

without any programming, so there is a lot to do. 

11.  Conclusions 

The paper provides both new theoretical and practical results for the DL lifecycle data 

management area. The main theoretical result is a significant extension of the metamodel 

specialisation approach for DSL development. But the practical aspects are related to the 

ERDF project 1.1.1.1/18/A/045, where an easily usable system for DL lifecycle data 

management framework covering all phases of DL must be developed.  

A special orientation there is towards tasks for news agencies, including the Latvian 

News Agency LETA (it is a partner in the project). That is namely why the task of image 

captioning is chosen as a specialisation example in the paper.  

This paper, as mentioned in the Introduction, is an extended version of the Baltic 

DB&IS 2020 paper (Celms et al., 2020). The main additions, besides some local 

extensions, expand on: related works, especially Weights&Biases (WEB, g) which is the 

closest project to our approach; the extension mechanism, as well as introducing a 

Project tab; the DSL tool user point of view, description of the use of the library within 

your Python code. Towards the end of the paper there is also a novel section "Future 

Research", talking about some of the ideas for where this project could go in the future. 
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