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Abstract. Blockchain technology is ready to revolutionise the financial industry. The financial
industry has various security challenges (e.g., tampering, repudiation, denial of service, etc).
Also, the domain of information security has problems related to conceptual ambiguity and the
semantic gap. The Corda platform provides suitable technological infrastructure to build the
blockchain-based application (CorDapp) in the financial industry to overcome security chal-
lenges. In this paper, we build a Corda-based security ontology (CordaSecOnt) to improve the
security of financial industry from an ontological analysis that combines blockchain-based Corda
platform. We use Web ontology language (OWL) to build a semantic knowledge base to eliminate
conceptual ambiguity and semantic gap in information security. Our ontology provides classifi-
cations of assets, security criteria, threats, vulnerabilities, risk treatments, security requirements,
countermeasures and their relations. We evaluate the ontology by performing security risk man-
agement (SRM) of capital market post-trade matching and confirmation.

Keywords: Corda security ontology, CorDapp security risk management, Corda security risks
analysis, CordaSecOnt, Blockchain-based application

1 Introduction

The advent of Blockchain technology introduces new concepts to revolutionise the fi-
nancial industry. The European Central Bank (2017) presents the financial industry in-
terests to use blockchain technology in their infrastructure. The centralised infrastruc-
ture of financial industry is challenged by strict regulations and constant security risks
(AL-essa, 2019). The security risks harm the business processes and valuable assets that
could lead to a reputation loss or financial sanctions for the organization. For example,
the hackers used SWIFT credentials to steal $81m from the Bangladesh bank (Polyviou
et al., 2019). Also, the financial industry ranks second in data breaches. Hence, the
security risks in capital markets enable manipulative, illegal and abusive trade prac-
tices (WEB, a). This paper focuses on improving the security of the financial industry
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from an ontological analysis by combining blockchain and blockchain-based Corda
platform. The ontology includes the case of post-trade matching and confirmation, and
Corda-based application (CorDapp) to overcome various security challenges of it.

Other problems are conceptual ambiguity and the semantic gap in the field of in-
formation security. Fenz et al., (2009) and Mozzaquatro et al., (2016) explain that in-
formation security is one of the top challenges and required common understanding
to implement SRM approaches. The ontology describes the concepts of a particular
domain that builds on a controlled vocabulary. In this study, we use Web ontology lan-
guage (OWL) to build a semantic knowledge base to eliminate conceptual ambiguity
and a semantic gap in information security when building financial industry CorDapps.
The CordaSecOnt provides unified and formal knowledge models that could support
the SRM, clear understanding and communication of CorDapp information security.

The field of blockchain is continuously evolving, and security plays an impor-
tant role in the acceptance of blockchain-based applications. In the security domain
of blockchain, there are various interchangeable security concepts that bring the con-
ceptual ambiguity and confusion to treat security threats effectively. An ontological
representation of information security is a valuable tool to assess and communicate the
security aspects of the application that brings timely decisions to fix them.

The research objective of this paper is to build Corda-based security ontology (Cor-
daSecOnt) for capital markets post-trade matching and confirmation. It provides an
extensible knowledge base of information security including the notions of Blockchain
and Corda. We establish a road-map (Fig. 1) to reach our objective. First, we define the
research objective. Second, we align the concepts of Blockchain, Corda and information
security. Third, we follow the domain model of SRM to build CordaSecOnt.

Fig. 1. The road-map to build Corda-based security ontology

This paper is an extension of the work reported in (Iqbal and Matulevičius, 2020),
where we perform SRM of post-trade matching and confirmation. In this paper, we
present the Corda-based security ontology and its application in post-trade matching
and confirmation case. The paper is structured as follows: Section 2 presents the Back-
ground and Section 3 discusses the capital markets post-trade matching and confirma-
tion in the context of centralised and decentralised infrastructure. Section 4 presents the
ontology construction and in Section 5 we perform an evaluation of ontology. Section
6 is the related work and Section 7 concludes the paper.
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2 Background

In this section, firstly, we discuss the Blockchain, Corda platform and CorDapp. Sec-
ondly, we present the concepts of security risks analysis and ontology building tools.

2.1 Blockchain

Blockchain is an append-only decentralised distributed ledger technology that promises
to overcome the security challenges and enhance data integrity. Blockchain operates
over a peer-to-peer (P2P) network where the nodes join the network and establish a
chain of blocks. In Blockchain, a block is connected to a previous block by a unique
cryptographic hash (Fig. 2). The ledger is immutable and updates every time over a P2P
network when a new block populates.

Fig. 2. The Block structure of Blockchain

Fig. 2 illustrates a block structure that contains a block header and a block body.
Block header has a version number, timestamp, block size, difficulty, nonce, and the
number of transactions. Block body contains confirmed and processed transactions in
a Merkle tree. Blockchain is classified as a permissionless or permissioned (Pradeep-
kumar et al., 2018). In a permissionless blockchain, anyone can join the network and
participate in the consensus mechanism. Also, the transactions are publicly visible to
every participant node. In permissioned blockchain, only predefined verified nodes can
join the network and participate in the consensus mechanism. The transaction visibility
is restricted (Ali et al., 2018) in permissioned Blockchain.

In a Blockchain, a smart contract (SC) is a computer program (Atzei et al., 2017),
(Buterin, 2014) which constitutes a digital contract to store data and execute (Macrinici
et al., 2018) when certain conditions meet. For example, in the Ethereum platform,
developers use Solidity programming language to write SC and to build decentralized
applications (dApps) (Buterin, 2014). In Hyperledger Fabric (HLF), SC is known as
Chaincode. Similarly, other blockchain platforms introduce SCs to perform contrac-
tual agreements in a digital realm (Iqbal and Matulevičius, 2019a). The SCs are the
high-level programming language-based programs and those can be error-prone where
security flaws could be introduced (e.g. the reentrancy bug (Liu et al., 2018)).

Blockchain eliminates the trusted intermediary and follows the decentralized con-
sensus mechanism to validate the transactional information. For example, Bitcoin and
Ethereum use Proof of Work (PoW) consensus, that is a widely used computational
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rich energy-waste consensus strategy where special nodes called miners define the
state of the ledger by solving the crypto puzzle. In contrast, Proof of Stake (PoS) is
an energy-efficient consensus strategy (Zheng et al., 2016) where miners become val-
idators (WEB, b). In order to participate in the consensus, validators lock a certain
amount of cryptocurrency. There are other consensus mechanisms, for example, Dele-
gated Proof of Stake (DPoS), Proof of Authority (PoA), Proof of Reputation (PoR) and
Proof of Spacetime (PoSt). Table 1 shows the comparison of Blockchain platforms.

Table 1. Comparison of Blockchain platforms based on different characteristics

Bitcoin Ethereum HLF Corda
Type Permissionless Permissionless Permissioned Permissioned
Smart contract Yes Yes Yes Yes
SC language Script Solidity GO, Java DAML
Consensus PoW PoW, PoS PBFT, CFT Validity, Uniqueness
Cryptocurrency Bitcoin (BTC) Ether (ETH) No cryptocurrency No cryptocurrency
Transactions 7 TPS 8-9 TPS Thousands Thousands
Confidentiality No No Yes Yes
Applications Cryptocurrency dApps dApps Financial dApps

2.2 Corda platform and CorDapp

Corda is an open-source enterprise blockchain-based platform and CorDapp is a Corda-
based decentralised application. Corda is a permissioned blockchain and nodes require
certain permissions to access the data. Corda focuses on to bring privacy, transparency
and security to financial operations between different parties. The Corda platform uses
i) validity, and ii) uniqueness consensus (Koens et al., 2019), (Hearn, 2016). The validity
consensus ensures the correctness of input & output states and required signatures in a
transaction. The uniqueness consensus checks if the transaction is not already consumed
(e.g., protection against double-spending) (Koens et al., 2019), (Hearn, 2016).

Fig. 3. Transaction flow of Corda [adapted from: (Parag, 2020)]

In Corda, peers communicate point-to-point (Fig. 3). For example, the transaction
specifies a list of message recipients that sign and verify the transaction. The flow mech-
anism supports multi-step coordination and verification of transaction messages. Corda
network peers communicate back-and-forth before a transaction commit. Transaction
flows validate the sequence of steps that makes a transaction legitimate and commit
on the ledger that replicates over different peers on the P2P network. In Fig. 3, Alice
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initiates the transaction flow and creates a transaction. Alice signs the newly created
transaction and sends it to Bob. In this stage, Alice flow is suspended & checkpointed,
and now Bob transaction flow begins. Firstly, Bob inspects and verifies the transaction
upon receiving from Alice. Secondly, Bob signs a transaction and commits. The trans-
action now signed by both parties (Alice and Bob) and the system sends it back to Alice
for verifying the signature of Bob. After verification of Bob signature, Alice commits
the transaction that fulfils the criteria of a successful transaction process and completes
the flow. This is an example of two parties transaction process, but Corda flows can
involve multiple parties and multiple signatures (Parag, 2020).

Fig. 4. Architecture of Corda platform [(adapted from: WEB c)]

The architecture (Fig. 4) and Table 2 describes the core elements of Corda platform.
A Corda node is a JVM run-time environment, it has a unique identity on the network
and hosts Corda services and CorDapps. CorDapp is installed at the level of the indi-
vidual node, rather than on the network itself (WEB, d). Corda uses an asynchronous
protocol (e.g., AMQP/TLS) (WEB, d) when nodes communicate with each other and
HTTP communication for registering a Corda node. In Corda, client application use
RPC calls to communicates with Corda nodes and Corda vault is a database that relies
on java database connectivity from the Corda node (WEB, c), (WEB, d).

2.3 Security risks analysis

Firstly, we explore SRM Domain Model (Fig. 5) that supports making decisions related
to information security of the system (Dubois et al., 2010), (Matulevičius, 2017). SRM
domain model comprises three main concepts: (i) asset-related concepts, (ii) risk-related
concepts, and (iii) risk treatment-related concepts.



Corda Security Ontology: Example of Post-Trade Matching and Confirmation 643

Table 2. Components of Corda platform

Component Description
Persistence layer A persistence layer for storing data, for example, in SQL-based

database.

Network interface A network interface for interacting with other nodes.

RPC interface An RPC interface for interacting with the node’s owner.

Service hub A service hub for allowing the node’s flows to call upon the
node’s other services that are node utilities.

CorDapp interface CorDapp interface and provider for extending the node by in-
stalling CorDapp.

Vault Stores output states relevant to a particular node.

Transaction storage Key value store for attachments, transactions, and serialized
state machines.

Flow State Machine Manager Manages operation of flow state machines. Flows are routines
to run and update the ledger for the node. States are the facts to
reach agreement.

Contracts Contracts defining what constitutes a valid ledger update.

Identity/Key Management Manages various supported identities and generated keys used
to sign transactions.

Scheduler Schedules operations for future points in time.

Network Map Searchable phone book of nodes on network.

Notary Obtains authorized signatures.

Messaging Interface with other nodes.

Fig. 5. The SRM domain model [adapted from: (Dubois et al., 2010), (Matulevičius, 2017)]
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The assets could be classified as system asset or business asset. The business asset
has value and system asset supports it. Security criteria (C - Confidentiality, I - Integrity
and A - Availability) distinguish the security needs. In risk-related concepts, the risk is
a combination of risk event and impact. The risk event constitutes the threat and one or
more vulnerabilities. The threat targets the system asset and it is triggered by the threat
agent, who uses an attack method and exploits the vulnerability. Impact harms the asset
and negates the security criteria. The risk treatment-related concepts present decisions
to treat security risk by defining security requirements. Security requirements are im-
plemented as the controls (e.g., countermeasures). We extract the object properties (e.g.,
relations) (Table 3) from the SRM domain model. These relations are associated with
assets, risks and risk treatment-related concepts. In risk-related concepts, we only utilise
the concepts of threat and vulnerability that refine the scope of our ontology to enhance
the understandability of CordaSecOnt to a wide range of domain experts.

Table 3. Ontology relations from the SRM domain model

Relation Description
characteristicOf A vulnerability is a characteristic of a one or more system assets that exposes

weakness. For example, a vulnerability “MissingAccessControl” is a character-
istic of system asset “ImportMessageEngine”.

constraintOf
(hasConstraint)

Security criteria is a constraint of business assets. In CordaSecOnt, constraintOf
relation is an inverse of hasConstraint. For example, a business asset “Im-
portMessage” has a constraint “Integrity”.

exploits A threat exploits zero to several vulnerabilities. For example, a threat “Spoof-
ing” exploits “MissingAccessControl” vulnerability.

implements One or more countermeasures implements one or more security requirements.
For example, a countermeasure “AccessControl” implements “RestrictUnautho-
risedAccess” security requirement.

leadsTo Each risk treatment decision leads to the refinement of none or several secu-
rity requirements. For example, a risk treatment decision “Reduction” leads to
“RestrictUnauthorisedAccess” security requirement.

mitigates A security requirement mitigates one or more security threats. For exam-
ple, a security requirement “RestrictUnauthorisedAccess” mitigates a threat of
“Spoofing”.

negates At the level of business assets, vulnerability negates the defined security cri-
teria of business assets. For example, a vulnerability “MissingAccessControl”
negates (Availability or Confidentiality or Integrity) of business assets.

supports A system asset supports one or more business assets. For example, a system
asset “ImportMessageEngine” supports business assets “ImportMessage and
TradeMatching”.

targets A threat targets one or more system assets. For example, a threat “spoofing”
targets “ImportMessageEngine and SenderEngine” system assets.

The SRM domain model explains relationships among assets, risks and risks treat-
ments related concepts that establish a process (Fig. 6) combining different activities to
perform SRM. For example, in this work, we explore the case of post-trade matching
and confirmation to identify what assets to secure. Then, we determine the security ob-
jective in the context of confidentiality, integrity and availability. Following the process,
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we perform a security risk analysis to identify what are the threats within post-trade
matching and confirmation that exploit various vulnerabilities to harm the assets and
negate security criteria of the business assets. In the next stage, we define the risk treat-
ment decisions to treat the threats and determine the security requirements. Finally, the
security requirements are implemented by incorporating security controls. SRM is not a
static approach, hence the process model of SRM enables to perform several iterations
to reach an acceptable level of each risk (Matulevičius, 2017).

Fig. 6. The process model of SRM domain model [adapted from: (Matulevičius, 2017)]

Furthermore, we utilise the STRIDE (Ruffy et al., 2016) (S - Spoofing, T - Tamper-
ing, R - Repudiation, Id - Information disclosure, D - Denial of service, E - Elevation
of privileges) threat model (Table 4) that supports a systematic analysis to identify and
explain the potential security threats. Here, STRIDE is selected as a security threat anal-
ysis tool to analyse the security of centralised post-trade matching and confirmation.
STRIDE supports the security risk analysis activity of the SRM process model.

Table 4. STRIDE threat model

Threat Description
Spoofing Pretending to be someone or claiming a false identity.
Tampering Unauthorised modification in data, process, memory or network.
Repudiation Denying that a specific action is not performed by you or you are not

responsible for that action. For example, deny if performed a destruc-
tive action.

Information disclosure Data leaks or disclosing information to an unauthorised user.
Denial of service (DoS) Exhausting system resources to make service or a network unavailable

for the potential system users.
Elevation of privilege Gaining unauthorised access and allowing one to perform such opera-

tions that are not authorised to do.

2.4 Ontology building tools

Ontology deals with the nature of existence. According to the Oxford dictionary, on-
tology combines a list of “concepts and categories in a subject area that shows the
relationships” between them (WEB, e). An ontology brings generalisation in a specific
domain and establishes an exchange of information (Noy and McGuinness, 2001). On-
tology structure area of interest (Mozzaquatro et al., 2015) and elaborates the meaning
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of concepts along with their relations that support to overcome the consequences of a
misunderstanding that could be time-consuming and costly. In (Noy and McGuinness,
2001), the authors listed some reasons to explain why to develop an ontology? For
example, the Table 5 explains the same reasons in the perspective to develop CordaSec-
Ont.

Table 5. Ontology building concepts

General reasons to build ontology CordaSecOnt perspective
To share common understanding of the
structure of information among people
or software agents.

To share common understanding of the information se-
curity of CorDapp among security experts.

To enable reuse of domain knowledge. To enable reuse of CorDapp information security do-
main knowledge.

To make domain assumptions explicit. To make explicit specifications of CorDapp information
security domain knowledge for new users.

To separate domain knowledge from the
operational knowledge.

To describe a CorDapp information security knowledge
from its ontology components according to a required
specification.

To analyse domain knowledge. Formalising CorDapp information security into an onto-
logical knowledge domain that permits security experts
to analyse security of CorDapp.

We use OWL to build Corda security ontology. OWL is based on description logic
(DL) and a W3C (WWW Consortium) standard to build an ontology. OWL is a se-
mantic web language to illustrate rich and complex knowledge about things, groups
of things, and relations between things (OWL Working Group, 2012). OWL combines
concepts (e.g., classes/subclasses) within a domain (e.g., Corda security domain), ob-
ject properties (e.g., relationships of concepts), data properties, restrictions, individuals
(e.g., instances of a class) and inference that is an automatic procedure to compute
conclusions based on evidence and reasoning within an ontology.

DL deals with formal knowledge representation and provides a logical formalism
for an ontology. DL illustrates the fundamental modelling concept relating to roles and
concepts (Rector et al., 2004). DL-based knowledge includes two components: i) Termi-
nological component (TBox), and ii) Assertion component (ABox) (Gao et al., 2013).
The TBox is a conceptualisation that associated with a set of facts (e.g., ABox) within
a knowledge domain. In Protégé, DL query tab is a plug-in feature to search knowledge
from an ontology when it is consistent and reasoner is working.

OWL supports resource descriptive framework (RDF) to define metadata model
(Hector and Boris, 2020), for example, RDF is a language that allows encoding, ex-
change and reuse of structured metadata (Miller, 1998) to build a readable semantic
infrastructure (Hector and Boris, 2020). RDF supports triplet format (e.g., subject-
predicate-object) for describing the ontology concepts. In this triplet (Tampering ex-
ploits MissingAccessControl), Tampering threat is a subject, exploits is a relation that
represent a predicate and MissingAccessControl vulnerability is an object.

We use SPARQL (SPARQL Protocol and RDF Query Language) as a semantic
query language to retrieve and manipulate domain knowledge that is mapped in RDF
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format (Herzog et al., 2007). SPARQL is W3C recommended query language to write
semantic queries and use RDF middle-ware to get results from an ontology. For exam-
ple, the following SPARQL query gets the system assets from the CordaSecOnt.

SELECT DISTINCT ?System_Asset WHERE {

?System_Asset rdfs:subClassOf CordaSecOnt:SystemAsset

}

We build our ontology using Protégé ontology editor (Fig.7). Protégé is a free, open-
source and most adapted ontology editor (Zamfira et al., 2018) that proposed by the
Stanford University in California.

Fig. 7. Protégé ontology editor

3 Capital market post-trade matching and confirmation

In this section, we present the context of capital market post-trade matching and confir-
mation in centralised and decentralised infrastructure.

3.1 Context of centralised infrastructure

A capital market is a part of financial industry and it processes the financial instru-
ments (e.g., securities, futures, options, and other assets). Mainly, the trading system
has three modules: front-office, middle-office, and back-office module. The important
action in the middle-office is trade matching and confirmation. The business process
model (Fig. 8) represents the post-trade matching and confirmation process between
counter-parties (e.g., Bank X is a buyer and Bank Y is a seller) (Iqbal and Matulevičius,
2020). The trade matching executes after receiving the trade details from front-office.
The financial organization (e.g., Bank X) performs trade matching with Bank Y. The
confirmation happens when the trade details are accepted and agreed by each counter-
party. In centralised trading, trade matching is performed manually, so there are high
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Fig. 8. Post-trade matching and confirmation in centralised infrastructure [adapted from: (Iqbal
and Matulevičius, 2020), (Placāns, 2019)]
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chances of security risks. The third parties (e.g., regulators and clearinghouses) assure
that the trade is valid and all the necessary information is provided (Beker, 2015).

Similar to Iqbal and Matulevičius (2019b), the architecture of post-trade matching
and confirmation in centralised infrastructure (Fig. 9) presents an abstraction of the sys-
tem components that organised mainly in three layers. The Presentation Layer exposes
the interaction interface where users interact with the application. The user interacts
with the services and performs different operations, which are present in a Application
Layer. The Data Storage Layer combines mainly the database, but also includes access
rights details, trade details and logs.

Fig. 9. Components of post-trade matching and confirmation in centralised infrastructure

3.2 Context of decentralised infrastructure

The business process model of CorDapp (Fig. 10) enables blockchain-based states, con-
tracts, flows, and a vault to interact with counterparties to perform the assets exchange
(Iqbal and Matulevičius, 2020). The counter-parties (e.g., Bank X & Y) perform the op-
erations without relying on the manual operations and trusted third-party. The CorDapp
performs the validation of a transaction by a notaries-based consensus (Hearn, 2016).
The counter-parties receive validated data from distributed Corda ledger over a P2P
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network. The involved counter-parties provide necessary details of the transaction by
Corda node to CorDapp that validates and completes the post-trade matching and con-
firmation. The process increases efficiency and reduces the risks of manual operations.
The architecture (Fig. 9) is extended to (Fig. 11) by integrating the Corda platform.
Similarly, the architecture (Fig. 11) has three different layers along with the auxiliary
components (e.g., client, nodes network, etc).

4 Ontology construction

We adopt the ontology construction method (Fig. 12) proposed by Uschold and Gruninger
(1996), the method has five distinctive stages: i) Identify purpose and scope, ii) Build-
ing ontology, it includes capture, coding and integrating phases, iii) evaluation, iv) doc-
umentation and v) guidelines.

4.1 Ontology scope

We begin the ontology development by defining its purpose and scope. The purpose of
an ontology is already discussed in (Section 1). We follow the instructions of Noy and
McGuinness (2001) to define the scope of ontology by answering these questions:

Q#1: What is the domain that the ontology will cover? The first question helps to de-
termine the domain of our ontology. For example, the domain is ”information security
of post-trade matching and confirmation using CorDapp”. We utilise the SRM domain
model to elicit the relationships of security concepts (Table 3).

Q#2: For what we are going to use the ontology? The CordaSecOnt would help to
perform SRM of CorDapp in two different perspectives. Firstly, what security threats
are mitigated by using the CorDapp in post-trade matching and confirmation. Secondly,
what security threats appear after using a Blockchain-based Corda platform.

Q#3: What types of questions the ontology should provide answers? The ontology
during SRM of CorDapp would bring the answers to the following questions.

– What assets to secure?
– What are the security threats that are mitigated by CorDapp?
– What are the security threats that are appeared within CorDapp?
– What are the vulnerabilities that exploit by security threats?
– What security controls are in place to mitigate security threats?

Q#4: Who will use and maintain the ontology? Security professionals (e.g., domain ex-
perts) will use and maintain the ontology when building CorDapps in post-trade match-
ing and confirmation.

These questions serve as the starting point to identify the scope of our ontology. To
further refine the scope of our ontology, we utilise the relations from the SRM domain
model (discussed in Q#1). In Table 3, we provide the relations of SRM domain model
that incorporated in our ontology. The SRM domain model relations are associated with
asset, risks and risks treatments-related concepts.
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Fig. 10. Post-trade matching and confirmation in CorDapp [adapted from: (Iqbal and Mat-
ulevičius, 2020), (Placāns, 2019)]
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Fig. 11. Components of post-trade matching and confirmation in decentralised infrastructure

Fig. 12. Ontology construction method [adapted from: (Uschold and Gruninger, 1996)]

4.2 Ontology building

Firstly, we capture the domain information (e.g., concepts and relations) and classify
in taxonomic structures. The classification technique refines the concepts belonging to
assets, security criteria, threats, vulnerabilities, risk treatments, security requirements
and countermeasures. The classifications improve the technical domain vocabulary of
concepts. Secondly, we code the concepts and relations to formalise the domain knowl-
edge in our ontology. The classifications related to Assets, Threats, Vulnerabilities and
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Countermeasures are available in the following sections and classifications of Security
criteria, Risk treatments and Security requirements are in Appendix.

4.2.1 Assets: We identify what assets to secure from the security threats, for exam-
ple, assets have a value and need protection against security threats. The assets are
classified as business (Fig. 13) or system assets (Fig. 14). Security criteria is a con-
straint of business assets and system assets support business assets. For example, a
business asset “ImportMessage” hasConstraint Integrity. System assets “SenderEngine
and ImportMessageEngine” support business asset “ImportMessage”. The following
statements are an example of DL for relations “hasConstraint” and “supports”.

supports some BusinessAsset / hasConstraint some SecurityCriteria

Fig. 13. Business assets classification

System assets at the same time could be business assets, it depends what asset value
to protect from a security threat. For example, system assets “TradeDetail, Transaction
and LogFile” support business asset “ProcessedTrade”. Here, “TradeDetail” is an ex-
ample of a business asset that is supported by system assets “Database, SenderEngine,
MatchingEngine”. The class definition of Asset is:

Class (Asset SubClass (

BusinessAsset SystemAsset

) class BusinessAsset (

restriction (hasConstraint someValuesFrom ( SecurityCriteria )

) class SystemAsset (

restriction (supports someValuesFrom ( BusinessAsset )

)

Asset class has subclasses (e.g., BusinessAsset and SystemAsset) and a restriction
“hasConstraint” on someValuesFrom the BusinessAsset. The someValuesFrom restric-
tion presents that security criteria is not a constraint on all the business assets.
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Fig. 14. System assets classification

4.2.2 Security threats: Security threats are classified as active or passive threats
(Fig. 15). Security threats classification is built upon the threats that are mitigated and
appear within CorDapp. For example, in financial industry, security threats related to
spoofing, tampering, repudiation, information disclosure, denial of service and eleva-
tion of privilege are mitigated by using a blockchain-based solution (e.g., CorDapp).
In contrast, some other threats appear (e.g., endpoint threat, quantum computing threat,
privacy violation, de-anonymization, smart contract threat and denial-of-state) in Cor-
Dapp that appear by using a Corda platform. Security threats exploit vulnerabilities and
target some business asset(s). The DL for relation “exploits” and “targets” is:

exploits some Vulnerability / targets some BusinessAsset

Threat class has subclasses (e.g., ActiveThreat, PassiveThreat) and a restriction “ex-
ploits” on someValuesFrom the Vulnerability. Another restriction “targets” on someVal-
uesFrom the SystemAsset. The someValuesFrom restriction illustrates that a particular
threat exploits particular vulnerabilities fully or partially and targets SystemAsset.

Class (Threat SubClass (

ActiveThreat PassiveThreat

) restriction (

exploits someValuesFrom ( Vulnerability )

) restriction (

targets someValuesFrom ( SystemAsset )

)

)

For example, in CorDapp a malicious actor is able to create a transaction and non-
validating notary consumes a state by considering it a valid transaction. The “DenialOf-
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Fig. 15. Security threats classification

Stack” threat exploits a vulnerability “NonValidatingNotariesConsumeState” within
CorDapp when non-validating notaries consume state. The “DenialOfStack” threat tar-
gets both “NonValidatingNotary” and “StateReference” SystemAsset.

4.2.3 Vulnerabilities: Vulnerabilities classification (Fig. 16) is built by identifying
the weakness within the system that enables a particular security threat. A vulnerability
is a characteristic of system asset(s) and negates the security criteria of a business asset.
The DL for relation “characteristicOf” and “negates” is:

characteristicOf some SystemAsset / negates some SecurityCriteria

Vulnerability class definition explains that it contains various vulnerabilities that are
characteristic of system assets and negates the security criteria of business assets.

Class (Vulnerability SubClass (

MissingAccessControl

ErrorProneSmartContract

.....

) restriction (

negates someValuesFrom ( SecurityCriteria )

) restriction (

characteristicOf someValuesFrom ( SystemAsset )

)

)

For example, the missing or improper implementation of access control presents
a weakness within a system. A malicious actor could exploit this vulnerability and get
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Fig. 16. Vulnerabilities classification

unauthorised access in the system. A vulnerability “MissingAccessControl” is a charac-
teristicOf “SystemAsset” (ConfirmationProcess, Database, ImportMessageEngine, Log-
File, MatchingEngine, SenderEngine, TradeDetail, TradeMatching and Transaction)
and negates some (Availability or Confidentiality or Integrity).

4.2.4 Countermeasures: Countermeasures classification (Fig. 17) presents the coun-
teract that implements security requirements. In contrast to security requirements, coun-
termeasures implement the security requirements to mitigate security threats and im-
prove the security of the system. The DL for relation “implements” is:

implements some SecurityRequirement

Countermeasure class definition explains that it contains various countermeasures
that implement the security requirements.

Class (Countermeasure SubClass (

AccessControl

SecureCommunication

.....

) restriction (

implements someValuesFrom ( SecurityRequirement )

)

)

For example, countermeasure “AccessControl” implements “RestrictRemoteOper-
ation” and “RestrictUnauthorisedAccess” security requirements.
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Fig. 17. Countermeasures classification

5 Ontology evaluation

We follow the task-based (Raad and Cruz, 2018) ontology evaluation approach. This
approach helps us to distinguish how CordaSecOnt improves the SRM of CorDapp.

5.1 CorDapp to mitigate security threats

In this section, we perform a SRM of post-trade matching and confirmation using Cor-
daSecOnt. Firstly, we organise the business assets, their security criteria, system assets
that support business assets, and what security threats target system assets (Table 6).
Secondly, we present the vulnerabilities in a centralised infrastructure of post-trade
matching and confirmation that exploit by different security threats. Finally, we illus-
trate the security controls to mitigate security threats.

Table 6. Assets to be secured in post-trade matching and confirmation

Business asset System asset Threat
Import message (I) Sender engine, Import message engine S
Trade data (I) Database, Trade matching, Confirmation process T, R
Trade detail (I, A) Database, Sender engine, Matching engine T, D
Processed trade (C, I) Trade detail, Transaction, Log file Id, R
Trade matching (I, A) Server, Import message engine, Matching engine Id, D
Confirmation process (A) Server, Trading system, Sender engine D
Trading (I) Access right, Remote operation, Trade execution E

The architecture (Fig. 18) helps to visualise the vulnerable assets in centralised post-
trade matching and confirmation. The vulnerabilities (Table 7) depict weaknesses of
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Table 7. Vulnerabilities that exploit by security threats

Vulnerability Characteristic of Threat
V#1 Missing communication protocol Import message engine, Sender engine S
V#2 Insecure transmission of data Confirmation process, Database, Import message,

Matching & Sender engine, Trade matching
S, T

V#3 Inappropriate validation of trans-
mitted data

Confirmation process, Database, Matching &
Sender engine, Trade matching

T

V#4 Missing access control Confirmation process, Database, Log file, Import
message, Matching & Sender engine, Trade de-
tail, Trade matching, Transaction

S, T, R

V#5 Ineffective logging Confirmation process, Database, Log file, Import
message & Matching engine, Trade detail, Trade
matching, Transaction, Server

R, Id

V#6 Missing requests filtering Database, Import message, Matching & Sender
engine, Trading system, Server

D

V#7 Unauthorised remote operation Access right, Remote operation, Trade execution E

the system assets and exploit by various security threats. The V#1 belongs to missing
or no proper implementation of communication protocols and it exploits by spoofing
threat (Brubaker et al., 2014), (POV Network, 2017). The in-secure transmission of
data (V#2) could be exploited by spoofing or tampering threats (Polyviou et al., 2019),
(Maurer et al., 2017). The inappropriate validation of transmitted data (V#3) enables
tampering threat (AL-essa, 2019), (Accenture Security, 2019). The poorly implemented
or having no access control (V#4) could enable spoofing, tampering and repudiation
threats (Maurer et al., 2017), (Accenture Security, 2019). The ineffective logging (V#5)
(Maurer et al., 2017), (Accenture Security, 2019) could happen because of ”insignificant
log message”, ”logging sensitive information”, ”unprotected logs”, ”centralised control
on logs” or having ”no backup of logs”. The V#5 could exploit by repudiation and
information disclosure threats. If a system has no proper mechanism to filter a large
number of requests (V#6) (WEB, a), (Maurer et al., 2017) then denial of service threat
could exploit V#6. The V#7 could exploit by elevation of privilege threat if a system has
weak controls to restrict unauthorised remote operations (V#7) (Maurer et al., 2017),
(Accenture Security, 2019).

We present CorDapp as a countermeasure solution (Fig. 11). The CorDapp counter-
measures (Table 8) implements security requirements that mitigate security threats and
protect the assets. The architecture (Fig. 11) illustrates the assets of post-trade matching
and confirmation and presents the CorDapp-based countermeasures (CC). To mitigate
V#1, CorDapp considers only authorised nodes over a P2P network where nodes be-
have both as client and server (Dagan et al., 2018). Also, the CorDapp incorporates
a mutually authenticated TLS connection (Corda Threat Model, 2018) to protect the
communication between nodes.

The in-secure transmission of data could lead to spoofing and tampering threats
(V#2) (Polyviou et al., 2019), (Maurer et al., 2017). The malicious user may intercept
the plain-text data transmission and gain unauthorised access to the system. It would
negate the confidentiality and integrity of data. The CorDapp mitigates by incorporating
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Fig. 18. Security threats vulnerabilities in centralised infrastructure of post-trade

PKI based cryptography and Intel SGX integration (Corda Threat Model, 2018) that
would bring the CPU P2P encryption and allows one to encrypt the entire ledger (Hearn,
2016). Also, a hardware security module (HSM) could be applied to manage and protect
digital keys (Corda Threat Model, 2018).

To mitigate V#3, the transaction validation mechanism is utilised. The Corda plat-
form uses a notaries-based decentralised consensus model to validate a transaction and
ensure authenticity and integrity (Corda Threat Model, 2018), (Hearn, 2016). In a cen-
tralised approach, the attacker can trigger a Man-in-the-Middle (MitM) attack and mod-
ify the transaction (Kubo et al., 2018). Similarly, in CorDapp the attacker can perform
MitM to modify the transaction but the notaries-based consensus model protects and
guarantee the integrity of transaction (Corda Threat Model, 2018). The V#4 is miti-
gated by a decentralised access-control in CorDapp. Also, only authorised nodes can
join the network that limits this vulnerability.

Multi-user applications are subjects to repudiation because the system allows a user
to perform/deny the malformed actions. The system should ensure that the user actions
are recorded in order to protect against insider security risks. In order to mitigate V#5,
CorDapp manages the records in a decentralised immutable ledger. It provides tamper-
proof transparent traceability and auditing. Also, the CorDapp logs each action of a
participant node that replicates over a P2P network (Corda Threat Model, 2018).

The V#6 is mitigated by introducing requests rate-limiting firewall. In CorDapp
the P2P communication is authenticated as a part of the TLS protocol (CC#1, CC#2);
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Table 8. Countermeasures that implement security requirements to mitigate threats

Countermeasure Implements Mitigate
CC#1 P2P network & Autho-

rised nodes
Filter large number of request,
Incorporate secure data transmission

S, T, D

CC#2 Mutually-authenticated
TLS connection & PKI

Implement communication protocol,
Make data unreadable before transmission

S

CC#3 Consensus Validate transmitted data T
CC#4 Access control Restrict remote operation, Restrict unauthorised access S, T, R, E
CC#5 Distributed ledger Enable appropriate logging, Protect logs R, Id
CC#6 Firewall Filter large number of request D
CC#7 JVM sandbox Restrict remote operation E

it means that the attacker could not join the Corda network to launch a DoS attack
(Corda Threat Model, 2018). To protect against unauthorised remote operations (V#7),
the CorDapp utilise the secure communication protocols (CC#1) along with the concept
of custom-built JVM sandbox (Corda Threat Model, 2018) to prevent unauthorised re-
mote operations and execution of code.

5.2 CorDapp security threats

In this section, we perform the SRM to mitigate security threats that appear within
CorDapp. Similarly, first, we identify the business assets, system assets, security criteria
and security threats (Table 9). For example, the i) endpoint vulnerability (EV) (such as
keys lost, weak passwords, physical access to digital wallets and devices), ii) quantum
computing threat (QCT), iii) privacy violation (PV), iv) de-anonymization (DA), v)
smart contract attack (SCA), and vi) denial-of-state attack (DSA).

Table 9. CorDapp-based post-trade assets and security threats

Business assets System assets Threat
CorDapp service (I, A) Digital wallet, Keys, Computers/devices, User EV
Transaction (I) Trade detail, Cryptography QCT
Customer data (C) Trade detail, Counter-parties PV
Counter-parties (C) Transaction, Trade detail, Counter-parties DA
Digital asset (I) Smart contract, Ledger SCA
Transaction validation (I, C) Non-validating notary, State reference DSA

The vulnerabilities (Table 10) belong to post-trade matching and confirmation in
CorDapp, called CorDapp vulnerabilities (CV). The vulnerabilities are mapped on the
architecture (Fig. 19) to visualise which assets are affected by these vulnerabilities.

The lack of awareness and knowledge (CV#1) about security could trigger the end-
point vulnerability (Velissarios et al., 2019). For example, if an attacker learns about
the private key then he can utilise to acquire access and ownership to data. Quantum
computing research is emerging and advancing in modern technology. In Blockchain,
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not using quantum-resistant cryptography (CV#2) could put consensus mechanisms and
private keys are at high risk in a post-quantum era (Velissarios et al., 2019). In CorDapp,
validating notary observe the full content of the transaction to validate it and Sharing
full content of transaction with validating notaries (CV#3) could lead to privacy viola-
tion (Koens et al., 2019). In CorDapp possible to link individuals data that could trigger
de-anonymization threat (Moser, 2017), (Koens et al., 2019). Error-prone smart con-
tracts (Corda Secure Coding Guidelines, 2020) (CV#5), for example, a smart contract
could have a logical bug, missing error handling, missing input validation or misuse of
programming language construct. In CorDapp, the malicious actor is able to create a
transaction and non-validating notary consumes a state (Koens et al., 2019) by consid-
ering it a valid transaction (CV#6).

Table 10. Vulnerabilities that appear within CorDapp and exploit by security threats

Vulnerability Characteristic of Threat
CV#1 Lack of awareness Device, Digital wallet, Keys, User EV
CV#2 No QC resistant cryptography Cryptography, Trade detail QCT
CV#3 Sharing content with validating notaries Counter-party, Trade detail PV
CV#4 Linking of user account with ID Counter-party, Trade detail, Transaction DA
CV#5 Error prone smart contract Ledger, smart contract SCA
CV#6 Non-validating notaries consume state Non-validating notary, state reference DSA

We collect various countermeasures (Table 11) that implement the security require-
ments and overcome these vulnerabilities. The architecture (Fig. 20) illustrates how the
countermeasures for CorDapp vulnerabilities (CCV) are applied to secure the CorDapp.

Table 11. Countermeasures that implement security requirements to mitigate threats of CorDapp

Countermeasure Implements Mitigate
CCV#1 Security awareness Improve security awareness & knowledge EV
CCV#2 Hardware security mod-

ule (HSM)
Incorporate secure data transmission,
Protect user digital possession

EV

CCV#3 Quantum-resistant cryp-
tography

Use Quantum computing resistant cryptography QCT

CCV#4 Transaction tear-off Protect transaction content from validating notary PV, DA
CCV#5 Code analyser Perform code analysis SCA
CCV#6 Trusted execution envi-

ronment
Zero-knowledge proof

Incorporate secure data transmission,
Protect transaction state from non-alidating notary,
Restrict linking of individual data and account

DSA

The lack of knowledge and awareness (CV#1) led attackers to steal information
(Bellekens et al., 2016) by social engineering and phishing (WEB, a), or accidentally
exposing the secure information (Maurer et al., 2017). The CCV#1 (Velissarios et al.,
2019) is related to educate system users about possible security risks if exposing their
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Fig. 19. Security threats vulnerabilities that appear within CorDapp

protected information. The organisations should arrange staff security training’s and es-
tablish a disciplinary process, promote incident reporting culture within an organisation
and imply user security policies. Also, incorporate hardware security modules (HSM)
(e.g., AWS cloud HSM, Azure key vault, Futurex, GemaltoLuna, N-cipher N-shield, Se-
curosys Primus X or Utimaco) to generate, protect, and store keys (CCV#2) (Corda
Threat Model, 2018), (Velissarios et al., 2019).

The quantum computing threat (Yin et al., 2018) is real, however, CorDapp does
not provide any mechanism (CV#2) to tackle this threat in a post-quantum era. The
possible way is to implement quantum-resistant cryptography schemes (CCV#3) (e.g.,
lattice-based, multivariate, hash-based, code-based, symmetric key quantum resistance
and supersingular elliptic curve isogeny cryptography) to secure against quantum com-
puting threats (Yin et al., 2018), (Koens et al., 2019).

The Koens et al., (2019) suggested to use transaction tear-off (CCV#4) to protect
against CV#3 and CV#4. For example, this concept within CorDapp would increase pri-
vacy, because it tear-off the information and shows a minimum amount of information
that should be kept confidential from the transaction (Transaction Tear-Offs, 2020).

The lack of exception handling and error-prone smart contracts (CV#5) could lead
to harm valuable assets, for example, Ethereum smart contract reentrancy attack when
an adversary stole $60 million Ethers (Atzei et al., 2017). The system should include
a smart contract’s code analyser (CCV#5) (Atzei et al., 2017) to detect errors, identify
race conditions and sanitise the smart contract code. In CCV#6, the author (Koens et al.,
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2019) suggested to use trusted execution environments (TEE), for example, IntelSGX
and zero-knowledge proof (ZKP) to protect against CV#6.

Fig. 20. Countermeasures to mitigate CorDapp security threats [need redesign]

6 Related work

At the beginning of ontology development, we explore various literature that builds the
ontologies to formalise and structure the domain of information security (Table 12).
Herzog et al., (2007) present OWL-based ontology in the domain of information se-
curity. It is a generic information security ontology that includes the core concepts of
assets, threats, vulnerabilities, countermeasures and their relations. The authors describe
the ontology hierarchy and reasoning capabilities by classifying assets, threats, vulner-
abilities and countermeasures in taxonomical structures. The ontology is created using
the Protege OWL tool and SPARQL to retrieve data from ontology.

Fenz et al., (2009) provide an ontological structure for information security domain
knowledge. The ontology model the concepts of assets, threats, vulnerabilities and con-
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trols and their implementation. These concepts grouped into three sub-ontologies (se-
curity, enterprise and location). The ontology follows the OWL-DL to define relations
between the concepts of sub-ontologies. The authors use the fire threat example to en-
sure that ontology is generic enough to cover the entire information security domain
and supports the SRM process.

Security requirements are difficult to elicit, analyse, and manage (Souag et al.,
2015), the authors (Souag et al., 2015) use the ontological approach to facilitate security
requirements elicitation process. The ontology uses the concepts of organisation dimen-
sions (e.g., assets), risk dimensions (e.g., risk, threats, vulnerabilities and impact), treat-
ment dimension (e.g., security requirements). The ontology is developed using OWL,
Protégé and Semantic Query-Enhanced Web Rule Language (SQWRL) to query data
from ontology. The authors performed the controlled experiment to demonstrate that
the ontology helps in security requirements eliciting process.

Table 12. Mapping of security ontologies to the CordaSecOnt. The acronym defined in the table
are: Se. C. - Security Criteria, Vul. - Vulnerability, RT - Risk Treatments, SR - Security Require-
ments, Cou. - Countermeasures, DM - SRM Domain Model, BC - Blockchain.

Asset Se. C. Threat Vul. RT SR Cou. DM BC
Herzog et al., (2007) x – x x x – x – –
Fenz et al., (2009) x – x x – – x – –
Souag et al., (2015) x – x x x x x – –
Vega-Barbas et al., (2019) x – x x – – x – –
Mozzaquatro et al., (2018) x – x x x – x – –
Zamfira et al., (2018) – – x – – – x – –
Silva and Rafael (2017) x x x x x x x – –
Gao et al., (2013) x – x x x – x – –
CordaSecOnt x x x x x x x x x

Substantial research has been conducted to formalise and structure the knowledge
of information security. The above discussed related work represent the examples of
generic information security ontologies, there also exist domain-specific ontologies to
structure knowledge of information security for a specific domain. For example, Vega-
Barbas et al., (2019) present an ontology-based system for dynamic risk management
in administrative domains. The work collected and modelled the assets, threats and vul-
nerabilities in the administrative domain. The Mozzaquatro et al., (2018) develop an
ontology-based cybersecurity framework for the Internet of Things (IoT) to improve
the IoT cybersecurity focusing on the enterprise monitoring, analysis and classification
of security vulnerabilities. The IoT cybersecurity ontology framework deals security
of IoT at design time, run time and an integration layer. The ontology uses OWL and
Protégé to classify assets, vulnerabilities, threats, security properties and security mech-
anisms in IoT security domain.

Zamfira et al., (2018) build the ontology of cyber-operations in networks of com-
puters. The ontology improves the detection capabilities of attacks at various levels of
application. Silva and Rafael (2017) present the ontologies for network security and
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discuss future challenges. The (Gao et al., 2013) created an ontology-based security
assessment framework of network and computer attacks. The ontology explains taxon-
omy of attacks in the context of attack impact, attack vector, attack target, vulnerability
and defence strategies.

The related works so far develop either generic or domain-specific ontology of in-
formation security mainly focusing on the centralised applications. In the above work,
the definition of assets is not concrete, for example, no categorisation of business and
system assets. Also, missing the security criteria of assets. The relations between risk
treatments-related concepts are not explicitly described, for example, what risk treat-
ment decisions refine security requirements that implement by security controls (e.g.,
countermeasures). The relations between concepts are defined mainly based on assump-
tions and neglected the use of information security or SRM domain model.

In contrast, our ontology focusing on the information security of blockchain-based
decentralised applications where we utilise the Corda platform and evaluate the on-
tology using post-trade matching and confirmation case of financial industry. Our on-
tology uses the SRM domain model relations that explicitly explains the assets, risks
and risks treatments-related concepts. Also, SRM domain model provides the security-
based technical vocabulary for our ontology to define concepts and relations.

7 Discussion and concluding remarks

In this work, we utilise the SRM domain model and STRIDE to build Corda-based
security ontology for post-trade matching and confirmation. We define the scope of
our ontology and develop the classifications related to assets, security criteria, threats,
vulnerabilities, risk treatments, security requirements and countermeasures. Later, we
evaluate the ontology by performing SRM of capital markets post-trade matching and
confirmation case. In SRM, we explore the security threats in two different perspec-
tives: (i) the security threats that are mitigated (e.g., spoofing, tampering, repudiation,
information disclosure, denial of service and elevation of privilege) by using CorDapp,
and (ii) security threats that appear (e.g., endpoint threat, quantum computing threat,
privacy violation, de-anonymization, smart contract threat and denial-of-state) within
CorDapp by using a blockchain-based Corda platform.

CordaSecOnt is a publicly available knowledge base of information security that
combines blockchain-based Corda platform. The CordaSecOnt could support the de-
velopers’ to perform SRM while developing financial industry CorDapps. Also, the
CordaSecOnt encode the static knowledge of Corda information security to dynamic
ontology-based knowledge that could be extended, reuse or integrate with other se-
curity ontologies. The CordaSecOnt is the first blockchain-based information security
ontology and this work could trigger the development of more detailed and acceptable
ontology representation in the domain of blockchain-based information security.

As a part of future work, we would like to validate the Corda security ontology by
evaluating it with information security experts. The experts would provide a discus-
sion on a question “Is CordaSecOnt supports a process of SRM when building financial
industry CorDapps”?. In another future work, we would utilise the findings of this re-
search to build an ontology-based security risk reference model for blockchain-based
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applications to evaluate their security. The identified components of CorDapp would
be generalised in a way that would not be dependent on the specific blockchain type
or platform. The ontology-based security risk reference model would explain and help
to explore the blockchain-based applications in the direction of assets-related, risks-
related and risks treatments-related concepts.

Acknowledgement. The authors would like to thank Justs Placāns (Riga Technical Uni-
versity) for the constructive comments and significant contribution while preparing this
paper.
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Iqbal M., Matulevičius R. (2020). Managing Security Risks in Post-Trade Matching and Confir-
mation Using CorDapp. Proceedings of DB&IS 2020 Databases and Information Systems,
325-339.

Koens, T., King, S., Bos, M. Van Den, Wijk, C. Van, Koren, A. (n.d.). Solutions for the Corda
Security and Privacy Trade-off : Having Your Cake and Eating It.

Kubo, R. (2018). Detection and Mitigation of False Data Injection Attacks for Secure Interac-
tive Networked Control Systems. Proceedings of 2018 IEEE International Conference on
Intelligence and Safety for Robotics (ISR), 7–12.

Liu, C., Liu, H., Cao, Z., Chen, Z., Chen, B., Roscoe, B. (2018). ReGuard: Finding reentrancy
bugs in smart contracts. Proceedings of International Conference on Software Engineering,
65–68.

Macrinici, D., Cartofeanu, C., Gao, S. (2018). Smart Contract Applications within Blockchain
Technology: A Systematic Mapping Study. Proceedings of Telematics and Informatics, (Oc-
tober), 0–1.
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Appendix

Classifications

Security criteria: Security criteria classification (Fig. 21) is based on the concepts of
CIA triad. Security criteria represent the constraint of business assets. The relation “con-
straintOf” is an inverse of “hasConstraint”. For example, security criteria “Integrity” is
a constraint of business asset “ImportMessage”, the same example is presented in Asset
classification with the “hasConstraint” relation. The DL for relation “constraintOf” is:

constraintOf some BusinessAsset

Fig. 21. Security criteria classification

If a security expert wants to explore security criteria of business assets within Cor-
Dapp, he can browse to CordaSecOnt to examine class definition. The class definition
of SecurityCriteria is:

Class (SecurityCriteria SubClass (

Confidentiality Availability Integrity

) restriction (

constraintOf someValuesFrom ( BusinessAsset )

)

)

The definition explains a class SecurityCriteria has subclasses (e.g., Confidentiality,
Availability, Integrity) and a restriction “constraintOf” on someValuesFrom the Busi-
nessAsset. The someValuesFrom restriction presents that security criteria is not a con-
straint of all the business assets.

Risk treatments: Risk treatments classification (Fig. 22) includes four different risk
treatment decisions. Risk treatment enables a decision process to treat identified se-
curity threats. A treatment decision satisfies the security need and leads to security
requirements. The DL for relation “leadsTo” is:

leadsTo some SecurityRequirement

RiskTreatment class definition explains that it has subclasses (e.g., Avoidance, Re-
duction, Retention and Transfer) that leads to refine security requirements.



670 M. Iqbal & R. Matulevičius

Fig. 22. Risk treatments classification

Class (RiskTreatment SubClass (

Avoidance Reduction Retention Transfer

) restriction (

leadsTo someValuesFrom ( SecurityRequirement )

)

)

For example, risk treatment “Avoidance” leadsTo the refinement of security require-
ment “EnableAppropriateLogging, FilterLargeNumberOfRequest, IncorporateSecure-
DataTranmission and ValidateTransmittedData”.

Security requirements: Security requirements classification (Fig. 23) includes condi-
tions to make true within the system to mitigate security threats. For example, a security
requirement is the refinement of a risk treatment decision to mitigate the threats. The
DL for relation “mitigates” is:

mitigates some Threat / mitigates some DenialOfStack

Fig. 23. Security requirements classification

SecurityRequirement class definition explains that it contains various security re-
quirements to mitigate security threats.
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Class (SecurityRequirement SubClass (

RestrictUnauthorisedAccess

IncorporateSecureDataTransmission

.....

) restriction (

mitigates someValuesFrom (

Threat (

restriction (

unionOf (ActiveThreat PassiveThreat)

)

)

)

)

)

For example, security requirement “RestrictUnauthorisedAccess” mitigates Repu-
diation, Spoofing and Tampering threats.

Individuals

Individuals within OWL-based ontology represent instances of a class that share com-
mon characteristics. Individual instances are specific concepts that sometimes indicate
the lowest level of granularity in the knowledge domain (Noy and McGuinness, 2001).

Class: Confidentiality - Individuals: Privacy, Secrecy
Confidentiality describes that information is not available or disclosed to unauthorised
individuals, entities or processes (Matulevičius, 2017). Privacy and Secrecy both are
instances of Confidentiality class because they share common characteristics. For ex-
ample, keeping CustomerData secret to protect user privacy.

Class: Integrity - Individuals: Accuracy, Completeness
Integrity describes information authenticity and is not modified by an unauthorised indi-
vidual (Matulevičius, 2017). Accuracy and Completeness both are instances of Integrity
class because integrity looks after the accuracy and completeness of business assets. For
example, TradeData should be integral by making sure the accuracy and completeness
of the TradeData.

Class: DistributedLedger - Individuals: Auditable, Decentralised, Immutability, Prove-
nance/Traceability, Replication/Redundancy, TamperProof, Transparent
A distributed ledger is shared and synchronized across multiple untrusted nodes on the
P2P network. A DistributedLedger on the blockchain-based Corda platform should ease
the examination process of financial transactions (Auditable), no third-party control the
operations (Decentralised), nobody can modify the transaction once recorded on the
ledger (Immutability), trace the origin of transaction or asset (Provenance/Traceability),
shared the full copy of the ledger on the network nodes (Replication/Redundancy), val-
idate the ledger is not changed or modified (TamperProof), network participant nodes
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can view the relevant transactional information (Transparent).

Class: Device - Individuals: Computer
The class Device could consist of any hardware device, for example, Computer.

Class: AccessControl - Individuals: Decentralised
The class AccessControl has an instance Decentralised that indicates on blockchain-
based Corda platform no third-party should manage the user access controls.

Class: PeerToPeerNetwork - Individuals: Decentralised, Disintermediary, Transparent
The class PeerToPeerNetwork has instances that illustrate P2P network should be De-
centralised, Disintermediary and Transparent.

Class: CustomBuiltJVMSandbox - Individuals: Deterministic
The Corda platform custom-built JVM sandbox should be deterministic (Corda, 2020).
Hence, class CustomBuiltJVMSandbox has an instance of Deterministic.

Class: ZeroKnowledgeProof - Individuals: Completeness, Soundness, ZeroKnowledge
The zero-knowledge proof should fulfil the criteria of completeness, soundness and
zero-knowledge. Hence, the class ZeroKnowledgeProof has three different instances:
Completeness, Soundness and ZeroKnowledge.

Ontology documentation

Inadequate documentation is the main barriers to effective knowledge sharing and un-
derstanding the ontology (Skuce, 1995). In order to overcome this issue, we document
all the important assumptions and concepts, for example, the classes and sub-classes de-
fined in the ontology, relations, individuals and meta-ontology to clarify what ontology
is about and to interpret the meaning of ontological claims. Also, we use the Protégé
annotation properties to document the terms (e.g., for classes, relations and individuals)
separately that we used to build our ontology.

Ontology usage guidelines

This section belongs to the usage of ontology that explains how to use, integrate or ex-
tend this ontology. The guidelines include the resources of CordaSecOnt (Table 13) and
educate the users that are not familiar with OWL or OWL-based tools. Our ontology is
created by using Protégé ontology editor and the ontology is available and accessible
online. We use the OntoGraf Protégé plugin to generate classifications graphs and Pel-
let reasoner to validate the consistency of our ontology. We also use PyLODE1 (Python
Live OWL Documentation Environment) tool to make human-readable form of ontol-
ogy that give intuitive look to understand the encoded concepts within ontology and
OWLGrEd2 ontology visualisation tool to present graphical look of CordaSecOnt. In

1 https://github.com/rdflib/pyLODE
2 http://owlgred.lumii.lv/
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order to use CordaSecOnt, first, install Protégé and open ontology. Second, retrieve in-
formation from ontology using following SPARQL queries. The CordaSecOnt could be
integrated with other security ontologies and use the blockchain-based Corda platform
security concepts. The ontology is available publicly at GitHub and could be extended.

Table 13. CordaSecOnt resources

Resource Resource URL
CordaSecOnt https://mmisw.org/ont/~mubashar/CordaSecOnt

GitHub https://github.com/mubashar-iqbal/corda-security-ontology

Protégé https://protege.stanford.edu/

OntoGraf https://protegewiki.stanford.edu/wiki/OntoGraf

Pellet Reasoner https://protegewiki.stanford.edu/wiki/Using_Reasoners

PyLODE https://mmisw.org/pylode?url=https://mmisw.org/ont/

~mubashar/CordaSecOnt

OWLGrEd http://owlgred.lumii.lv/online_visualization/ln9o

SPARQL queries
The SPARQL queries can be used to retrieve information from an ontology. The fol-
lowing header code will remain the same for all the queries listed in this section.

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

PREFIX owl: <http://www.w3.org/2002/07/owl#>

PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>

PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>

PREFIX CordaSecOnt: <https://mmisw.org/ont/~mubashar/CordaSecOnt#>

System assets: Retrieve system assets that support business assets.

SELECT DISTINCT ?System_Asset ?Supports_Business_Asset WHERE {

?System_Asset rdfs:subClassOf CordaSecOnt:SystemAsset .

?System_Asset rdfs:subClassOf ?Supports_Business_Asset .

?Supports_Business_Asset owl:onProperty CordaSecOnt:supports .

}

Business assets: Use the following query to get the business assets that have security
criteria constraint.

SELECT DISTINCT ?Business_Asset ?Constraint WHERE {

?Business_Asset rdfs:subClassOf CordaSecOnt:BusinessAsset .

?Business_Asset rdfs:subClassOf ?Constraint .

?Constraint owl:onProperty CordaSecOnt:hasConstraint .

{ ?Constraint owl:someValuesFrom CordaSecOnt:Confidentiality . }

UNION

{ ?Constraint owl:someValuesFrom CordaSecOnt:Integrity . }

UNION

{ ?Constraint owl:someValuesFrom CordaSecOnt:Availability . }

}



674 M. Iqbal & R. Matulevičius

Threats mitigated: The following query bring the threats that are mitigated by us-
ing CorDapp. The query result shows the threats mitigated, vulnerabilities and system
assets that target by threats.

SELECT DISTINCT ?Threats ?Vulnerabilities ?System_Assets WHERE {

?Threats rdfs:subClassOf ?Vulnerabilities .

?Threats rdfs:subClassOf ?System_Assets .

?Vulnerabilities owl:onProperty CordaSecOnt:exploits .

?System_Assets owl:onProperty CordaSecOnt:targets .

?Threats rdfs:seeAlso ?Domain .

FILTER regex(?Domain, "^Mitigated")

}

Threats appear: The following query bring the threats that appear after using Corda-
platform. The query result shows the threats appeared, vulnerabilities and system assets
that target by threats.

SELECT DISTINCT ?Threats ?Vulnerabilities ?System_Assets WHERE {

?Threats rdfs:subClassOf ?Vulnerabilities .

?Threats rdfs:subClassOf ?System_Assets .

?Vulnerabilities owl:onProperty CordaSecOnt:exploits .

?System_Assets owl:onProperty CordaSecOnt:targets .

?Threats rdfs:seeAlso ?Domain .

FILTER regex(?Domain, "^Appeared")

}

Countermeasures: List of countermeasures that implements security requirements.

SELECT DISTINCT ?Countermeasures ?Implements_Security_Requirements WHERE {

?Countermeasures rdfs:subClassOf CordaSecOnt:Countermeasure .

?Countermeasures rdfs:subClassOf ?Implements_Security_Requirements .

?Implements_Security_Requirements owl:onProperty CordaSecOnt:implements .

}

Security requirements: List of security requirements that mitigates security threats.

SELECT DISTINCT ?Security_Requirements ?Mitigates_Security_Threats WHERE {

?Security_Requirements rdfs:subClassOf CordaSecOnt:SecurityRequirement .

?Security_Requirements rdfs:subClassOf ?Mitigates_Security_Threats .

?Mitigates_Security_Threats owl:onProperty CordaSecOnt:mitigates .

}
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