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A Whole World of Circuitry
Visualizing Integrated Circuits using Geo Information Systems
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Abstract Circuit visualisation is crucial to get an overview of the results of hardware synthesis
processes. However, visualisation tools are often old, tailored to specific use cases and generally
have to deal with the issue of extremely large datasets while providing a smooth and interactive
user experience. In order to provide a smooth user experience and smooth learning curve for
arbitrarily large circuits, this paper introduces an approach that utilizes workflows and tools from
the geoinformation systems community, bridging the gap between integrated circuit synthesis
tools and state-of-the-art visualisation tools for large georeferenced datasets.
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1 Introduction

The electronic design automation (EDA) industry is a broad umbrella term for compa-
nies and products that provide software to design chips. The tasks of EDA are, among
others, the creation of circuit diagrams – especially when designing printed circuit
boards – but also the design of state machines which are used in sequential circuits
to represent internal behavior/memory (Rabaey et al., 2008; Wang et al., 2009).

The automated techniques used for the layout and placement of the integrated cir-
cuits (ICs), generate significantly large designs, which developers need to be able to
inspect. Therefore, appropriate visualisation tools are crucial, which is the reason why
all EDA tools come with various methods to visualise and browse a given design – this
functionality is a core part to verify that a design was synthesized as expected.

In order to be able to properly understand a given design, the tools should pro-
vide a smooth and ubiquitous user experience – being intuitively usable on any device.
However, EDA tools often are quite the opposite, as they are built as large, monolithic,
desktop applications and provide only a reasonably responsive user interface because
trillions of parts have to be browsed often by the drawing components.
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Figure 1. Electric (Rubin, 2012) was initially released in 1983, with the latest release (currently
9.07) being from 2016. Its C version was ported to Java in 2005.

Consequently, devices and workplaces are evolving in other directions: mobile com-
puting has long become prevalent, giving people new interaction paradigms while at
the same time giving application developers much more limited resources to work
with. While other communities have long embraced these not-so-new-anymore devel-
opments, EDA tools are still made to be used on large workstations, locking the ability
to browse designs in physical places and slowing down processes when people are else-
where.

In this paper, we use geographic information system (GIS) tools to enable the visu-
alisation of hardware designs that are not exclusively bound to workstations. The pur-
pose is to provide a first proof-of-concept that EDA workflows may benefit from more
modern development paradigms, especially when it comes to the ubiquity of tools. This
work maps EDA data visualisation to modern GIS tools, allowing designers to browse
their chips using state-of-the-art mapping applications from anywhere.

2 Circuit Visualisation

Circuit visualisation software is often old (Fourie and Volkmann, 2013; Fourie, 2018)
and sparse. While there are several open source tools available, most of them date back
two or more decades, often resulting in issues concerning portability, usability and build
processes. Examples of open source software packages that visualise ICs are shown in
Figs. 1 through 4.

While there are more commercial tool sets than open source solutions (such as EA-
GLE, CADSTAR, Allegro and more), they are often tied to licenses that are unsuit-
able for academic usage and/or quite expensive. Generally though, they often share the
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Figure 2. gEDA (Brorson, 2006) was initially released in 1998, with the latest release (1.8.2)
being from 2013.

Figure 3. KiCad (KiCAD, 1992) was inirially released in 1992 but remains active to this day, with
the latest release being a mere month old at the time of writing and its code repository showing
consistent activity.

same shortcomings – usually being updated more regularly (as long as they are com-
mercially viable and not discontinued) but with the additional point that some (such
as e.g. AutoCAD) need to cover essentially all use cases of computer-aided design, far
beyond the responsive and intuitive display of very large scale integration designs, re-
sulting in steep learning curves and feature sets far beyond an individual designer’s use
case.

The bottom line is: while there are tools that at least visualise circuits as part of
their (sometimes much broader) spectrum of available capabilities, the development
– especially of the open source solutions – is slow at best or got stuck at worst. The
tools are often part of larger, heavier application suites that include simulation engines,
design tools, synthesis flows etc. Cross-platform often means that these heavyweight
applications run on Windows and Linux, with no way to e.g. easily browse these designs
on more modern portable devices. At the same time, porting these visualisation engines
to more modern technologies is not a simple task, with each of them solving the task of
drawing potentially trillions of parts (more or less) responsively in its own, special way.

With a handful of companies de facto dominating the market of EDA tools, there is
not much competition to innovate and while open source tools may not exactly be stuck
in dead-ends, the community may just be too underpopulated to be able to quickly pick
up current technologies. Even simple common schemes such as user interactions that
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Figure 4. Magic (Ousterhout et al., 1985) was initially released in 1980, with the latest release
being from 2017.

have been established over the last decade are often disregarded in tools that have been
around much longer than that – with even basic interactions such as zooming out or
dragging the viewport requiring the designer to read the documentation.

3 Geo Information Systems

Geographic information systems are an active field of both, research (Longley et al.,
2010; Stefanakis, 2017; Netek et al., 2020) and commercial activities.

The rise of smart phones and location-based services has resulted in a large mass
market for mapping applications and a broad variety of both, big and small applications
and companies in both, commercial and open source communities.

Clients themselves are more short-lived and development cycles are faster in the
GIS than in the EDA community. That implies that technologies are usually more re-
cent and adapt more state-of-the-art approaches than applications that carry decades
of history around. More importantly though, the short-livedness of the GIS tools has
made a strict separation of concerns a necessity: servers that prepare and pass on the re-
quired data are less in numbers than the various front-ends that display it, but are in fact
(mostly) exchangeable. These servers solve issues like translating a broad range of data
with plethoras of different coordinate systems into data that can easily be processed by
clients.

This smallest denominator – the prevalent separation of concerns in a server that
distributes map data and a client (with potentially very limited resources) to consume
and display it – separates how most GIS tools work from most EDA tools around. The
data that is being passed to the clients mostly consists of “tiles”: square-ish parts of the
world map at particular zoom levels. While there are various formats available up to 3D
models of terrain and cities (Kolbe et al., 2005), a lot of services merely hand out raster
graphics for given areas.

Open source servers such as geoserver (Iacovella, 2017), mapserver (Vatsavai et al.,
2006) or deegree (Fitzke et al., 2004) allow geographical services to be hosted. Like-
wise, open clients such as NASA’s WorldWind (Bell et al., 2007), cesium (Cozzi and
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Figure 5. Pre-rendered tiles of circuits as they are generated and stored on the GIS back-end,
zoom levels 1, 2 and 3 (respectively from left to right).

Bagnell, 2013) or leaflet (Crickard III, 2014), among others, allow the data that is served
by those to be displayed and handled.

4 Approach and Workflow

This section first briefly describes our motivation for this approach and then goes into
the workflow. It also goes into more detail about which tools were used and in what
way.

With GIS tools being a more active field, and especially clients adopting new tech-
nologies (especially the web and mobile devices), this work illustrates how GIS tech-
nology can be used to assist developers in browsing their designs. This technology
essentially solves the same problem as EDA visualisation tools – allowing users to
browse large, location-referenced data sets that cannot be shown in their entirety due to
both, their size and their detail.

As designers have usually set up their tools the way they prefer them, the approach
should pick up these settings if possible. Instead of creating another new, incomplete
solution, the chosen approach is to utilize the existing tools to generate the data that
GIS back-ends require to drive the respective front-ends.

These pre-rendered tiles consist of various zoom levels that are transferred to the
mapping tools as required. Examples of different resolutions of a part of a small counter
circuit are shown in Fig. 5.

The approach currently utilizes the slippy map tiles standard (like Google or Open-
StreetMap), which is usually used to store and deliver square raster map tiles from
85.0511 degrees north to south. The chosen EDA tools are used to precompute these
tiles in the required format. In this way, the raster tiles can be easily handed out to arbi-
trary clients which – being web-based, desktop application, or any other platform – can
be used to browse through the circuits.

For the proof-of-concept the following tools were used:

– Qflow (Qflow, 2013) for synthesis and layouting,
– Magic (Magic, 2013) for IC visualisations and generation of the raster tiles,
– apache (Apache, 1995) webserver for providing raster tiles to clients and
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Figure 6. Suggested workflow to explore IC designs with GIS.

– leaflet (Leaflet, 2011) to access and browse through the circuits’ raster tiles.

The whole workflow is illustrated in Fig. 6. It relies solely on the combination and
scripting of off-the-shelf open-source tools and should thus be easily reproducible and
extensible.

1. The tool Qflow (Qflow, 2013) is open source, which provides a workflow for digital
synthesis. It uses hardware in a high-level behavioral language and turns this into
a physical circuits layout. Input data are hardware descriptions in Verilog. This is
synthesized into a lower level of abstraction (transistor level). Afterwards, a layout
and placement is done for the newly received hardware description. Here it is de-
termined where in the real chip the transistors and lines are placed. The result is
used by the next tool.

2. The open source tool Magic (Magic, 2013) is available for the visualisation of hard-
ware descriptions that have been already placed and laid out. Magic can also zoom
into the hardwares visualisation and create screenshots. Our approach uses raster
tiles, since Magic only generates images and does not provide a way to get vector
tiles. The designs are usually depicted with a quadratic shape and are therefore eas-
ily transferable to the Mercator representation of map applications. Furthermore,
Magic can be executed by scripts and thus performs the generation of the tiles. The
script specifies the position and zoom level of the respective tile and helps to easily
create a comprehensive set of tiles on multiple levels.
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3. Next, we need a server that provides the generated tiles to the user as easily as
possible. A web server is well suited for this purpose, which usually works with
the slippy map tiles by default. We used Apache (Apache, 1995) for our proof-of-
concept. In order to access the tiled visualisation, the generated tiles only had to be
placed in the directory intended for web pages.

4. Finally, for accessing and viewing the hardware visualisation, a web page has to
be created that can cope with the map data. For this task the tool Leaflet (Leaflet,
2011) – widely known in the mapping community – was used.

Figure 7. An adder circuit on a mobile device

5 Results

The resulting visualisation can be accessed from any connected device with a web
browser that can access the server. It generally results in a smooth experience even
on mobile devices with very limited resources. Examples of a visualisation of an adder
from the École polytechnique fédérale de Lausanne (EPFL) benchmark set can be seen
in Fig. 7.

The major advantage of this technology is that it outsources the computationally
intensive parts into the synthesis flow, allowing designers to quickly and easily browse
the circuits from anywhere, as long as the device has a good enough connectivity. This
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allows designers to check results of synthesis flows from a train, collaborate with col-
leagues on bug finding from their home or check oddities in the design from a hotel –
as long as a connection to the hosting system is available.

The system itself is a proof-of-concept that lacks a lot of functionality. While map-
ping systems support the selective display of layers, they are not exported yet. Also,
the system does not support any functionality besides viewing the circuit yet – no ele-
ments can be selected or investigated further in any way. Still, the experience itself may
already be considered a step into a new direction of browsing designs ubiquitously.

The most obvious room for improvement would be to generate required tiles on-
the-fly instead of precomputing them. This is because the generation of raster tiles,
especially in the higher zoom levels, takes a lot of time. The on-the-fly generation strips
off the tedious pre-processing step. Only the tiles requested by clients must be gener-
ated. This can cause delays, especially with the first calls, but it allows faster access to
the service for viewing a new circuit design.

6 Conclusion

This work uses open source software connecting tools from the EDA and GIS commu-
nities to visualise IC designs. The EDA tools are used for raster tile generation whereas
the GIS tools display the visualisations. Our aim was to make the visualisation of an
ICs design easily accessible, especially on mobile devices, so we have proposed the
simplest approach with examples to achieve this.
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Appendix: Magic Script to Automate Tile Extraction

s e t viewbox [ view bbox ]
box v a l u e s [ exp r [ l i n d e x $viewbox 0 ] / 4 ] [ exp r [ l i n d e x $viewbox 1 ] / 4 ] [ exp r [ l i n d e x

$viewbox 2 ] / 4 ] [ exp r [ l i n d e x $viewbox 3 ] / 4 ]

s e t d e p t h 7
s e t s t a r t D e p t h 0

p roc pow { a rg1 a rg2 } {
i f { $a rg2 == 0} { r e t u r n 1}
s e t r e s u l t $a rg1
f o r { s e t i 1} { $ i < $a rg2 } { i n c r i } {

s e t r e s u l t [ exp r $ r e s u l t * $a rg1 ]
}
r e t u r n $ r e s u l t

}

p roc squareBox {} {
i f {

[ box h e i g h t ] < [ box wid th ]
} t h e n {

box h e i g h t [ exp r [ box wid th ] / 4 ]
} e l s e i f {

[ box h e i g h t ] > [ box wid th ]
} {

box wid th [ exp r [ box h e i g h t ] / 4 ]
}

}

view

f o r { s e t i $ s t a r t D e p t h } { $ i < $d ep t h } { i n c r i } {
s e t b o x D i v i d e r [ pow 2 $ i ]
box v a l u e s [ exp r [ l i n d e x $viewbox 0 ] / [ exp r 4* $ b o x D i v i d e r ] ] [ exp r [ l i n d e x

$viewbox 1 ] / [ exp r 4* $ b o x D i v i d e r ] ] [ exp r [ l i n d e x $viewbox 2 ] / [ exp r 4*
$ b o x D i v i d e r ] ] [ exp r [ l i n d e x $viewbox 3 ] / [ exp r 4* $ b o x D i v i d e r ] ]

box p o s i t i o n [ exp r [ l i n d e x $viewbox 0 ] / 4 ] [ exp r [ l i n d e x $viewbox 1 ] / 4 ]
squareBox
p u t s " Box s i z e i s now [ box v a l u e s ] "

f o r { s e t j 0} { $ j < [ pow 2 $ i ] } { i n c r j } {
f o r { s e t k 0} { $k < [ pow 2 $ i ] } { i n c r k} {

p u t s " Rende r ing zoom l e v e l $ i a t $ j / $k "
s e t s t e p w i d t h [ box wid th ]
box p o s i t i o n [ exp r [ l i n d e x $viewbox 0 ] / 4 + [ exp r $ s t e p w i d t h

/ 4 * $ j ] ] [ exp r [ l i n d e x $viewbox 1 ] / 4 + [ exp r $ s t e p w i d t h
/ 4 * $k ] ]

s e t i n v e r s e Y I n d e x [ exp r [ pow 2 $ i ] − $k −1]
p l o t pnm $i −$j − $ i n v e r s e Y I n d e x 256

}
}

}
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