
Baltic J. Modern Computing, Vol. 9 (2021), No. 2, 195-209
https://doi.org/10.22364/bjmc.2021.9.2.04

Structuring and Controlling the Knowledge

for the Software User Support

Juris RĀTS, Inguna PEDE

RIX Technologies

Blaumaņa 5a-3, Rīga, LV-1011, Latvia

juris.rats@rixtech.lv, inguna.pede@rixtech.lv

Abstract. The research aims to create a smart user Support Assistant LAVA – a solution providing

context sensitive and user experience aware support to a user of a software product. The solution is

based on machine learning and search in a two-level distributed knowledge store. LAVA model

focuses on providing user on a mouse click with a content relevant to a current context. LAVA

uses context transferred from the supported product to instantly show a FAQ list of items used

and/or positively rated by other users in the same context. Full-text search and a topic hierarchy

are provided as well to cover as many of cases as possible given the content available currently in

the Knowledge base. Main design ideas of the LAVA model are presented in the article including

the calculation of ranges and creation of ranged context-sensitive FAQs, customizing the full-text

search, organizing the topic hierarchy and integrating with the Service desk. The article covers as

well the main considerations on how the LAVA model should be implemented in a successful

solution, and a description of method to evaluate the model performance.

Keywords: user support, case-based reasoning, context-sensitive knowledge, machine-learning,

full-text search, knowledge transfer.

1. Introduction

The aim of our research is to create a framework for a smart user Support Assistant

LAVA (Latvian acronym) - an automated service desk solution to support a user of a

software product (Product). The main benefits of our solution are:

 improved user training based on an easily accessible context-sensitive

Knowledge store of answers to routine questions of the users;

 reduced amount of time spent by support staff on answering routine

questions as the staff adds the related knowledge to the Knowledge store

immediately accessible for other users.

As stated in (Trujillo, a) the real problem with customer support automation lies with

an over-reliance on technology to do the jobs best left for real, live people. The

technology should be used for routine, recurrent tasks while leaving the more

complicated, less frequent ones to the human. In other words - humans should “do things

that don’t scale” (Trujillo, a). We believe accordingly that humans should talk to each

other while software should focus on things like user action logging and analysis,

advanced search and support for knowledge management. Our solution therefore is not

https://doi.org/10.22364/bjmc.2021.9.2.04
mailto:juris.rats@rixtech.lv

196 Rāts and Pede

going to pretend to be a chatbot but rather to provide a simple and user-friendly interface

for access to context sensitive knowledge (Rats and Pede, 2020).

It is frequently stated that the aim of the support automation is to reduce or eliminate

the need for human involvement when providing advice or assistance to user requests

(Trujillo, a). This definition is a bit one-sided as it overlooks another source of the

improvement – reducing the user need to create support requests in the first place. This

can be achieved by better integration of knowledge management with user support and

issue tickets management.

User support for a software product is mainly structured in two levels. The first level

serves the users of a particular Product instance (e.g. the users of a specific institution)

and is run by so-called power users. The power users handle routine problems raised at

the Product instance level and escalate the service requests to the second level if

necessary. The second level in turn is operated by the support staff of the Product

provider.

This architecture has advantages and disadvantages. The most important

disadvantage is that the second level support deals only with the end user problems

escalated by power users. The rest (i.e. routine problems) stays locked inside the first

level support unit and thus cannot be used by the second level support for the benefit of

users of the rest of Product instances. We address this disadvantage in our solution by

providing a mechanism of knowledge sharing between two levels of support.

2. Related work

Our research mainly focuses on defining self-service knowledge store based automated

process for the software product users that would help them to find answers for routine

questions and thus would reduce the requests to the Service desk.

One of the domains related to our research is recommender systems. There are

basically two types of recommender systems, Content-based and Collaborative filtering

(Raman, 2017). Content-based systems recommend similar items while collaborative

filtering systems recommend items that relate to similar users (e.g. user bought also this).

We use both approaches for our model.

Another technology related to our research is Case-based reasoning (CBR). CBR

utilizes the specific knowledge of previously experienced problem situations (cases). A

new problem is solved by finding a similar past case, and reusing it in the new problem

situation. CBR also is an approach to incremental, sustained learning, since a new

experience is retained each time a problem has been solved, making it immediately

available for future problems (Aamodt and Plaza, 1994).

At the highest level a CBR cycle may be described by the following four processes

(Aamodt and Plaza, 1994):

• RETRIEVE the most similar case or cases;

• REUSE the information and knowledge in that case to solve the problem;

• REVISE the proposed solution;

• RETAIN the parts of this experience likely to be useful for future problem

solving.

We use CBR process steps in our model as described in section 3.1.

 Structuring and Controlling the Knowledge for the Software User Support 197

2.1. FAQ and Knowledge Base software

A well-planned FAQ (Frequently Asked Questions) section is one of the tools that

should help users to find solutions for themselves and thus to reduce the amount of

service requests. A basic FAQ system comprises several groups of FAQ items and

provides users with means to select an item group, browse and expand the questions to

the relevant solution. This is enough if the FAQ contains up to a hundred or so items.

The lack of more advanced means for information search restricts the ability of the FAQ

system to grow the amount of the information. Either the less frequently used items must

be removed from the FAQ or more advanced means must be introduced.

The search is the next information location means to consider. A number of FAQ

solutions provide means for information search. Examples are Document360 (Graw,

2021), ProProofs Knowledge base (WEB, n) and HelpSite (WEB, j).

FAQ solutions may have a number of other features that mainly address needs of a

support staff – like workflows and revision history (WEB, n) collaboration (WEB, c) and

statistics (WEB, o). Still item grouping and search are the main end user means of the

basic FAQ solutions.

Knowledge base functionality is provided as well by a number of helpdesk and

ticketing systems.

2.2. Helpdesk and Ticketing solutions

Fontanella (2020) lists 14 freeware and commercial software and ticketing systems rated

there as the top solutions for 2020. All but two (Agiloft and Spiceworks) of the listed

systems feature knowledge base in some form.

Table 1 outlines knowledge base related features of the referred systems HubSpot's

Service Hub (WEB, a), Jira Service Desk (WEB, d), Zoho Desk (WEB, q), C-Desk

(WEB, f), SysAid (WEB, g), osTicket (WEB, e), ngDesk (WEB, k), Hesk (WEB, h),

ManageEngine ServiceDesk Plus (WEB, l), HelpDeskZ (WEB, i), Web Help Desk by

SolarWinds (WEB, p) and HelpSpot (WEB, m). Number in Topic Hierarchy column

designates supported levels of topic hierarchy.

Knowledge bases of the listed systems as a rule feature article creation, topic

hierarchy, search, tagging, embed media and user feedback. Most of them provide as

well an access control.

Knowledge bases mainly are not context-sensitive though. The following interesting

exceptions exist though:

• HubSpot’s service Hub provides a related articles feature; related articles are

automatically chosen based on their relevance to the current article, that

automatically adjusts based on article performance and visitor engagement;

• osTicket and ManageEngine ServiceDesk Plus both provide an option to link

articles manually to help topics.

198 Rāts and Pede

We did not find though any indication that the reviewed solutions (Helpdesk or

FAQ) would use context information from the supported software product. Namely – a

reference to a user interface item the user is activating a helpdesk system. The product

interface page (form) user activates a help system should be significantly related to what

a user is currently doing. Hence this can be used to determine what knowledge is most

relevant and should be presented to the user upon the activation.

3. Proposed Solution

We follow in our model the recommendation that humans should “do things that don’t

scale” (Trujillo, a). In other words – our model should be aimed at automating things

Table 1. Helpdesk and Ticketing systems.

Brand Search Topics Categories,

keywords,

tags

Embed

media

Feed-

back

Access

control

HubSpot's

Service Hub

+ 2 + + y/n +

Jira Service

Desk

+ + + + comm. +

Zoho Desk + 4 + + + +

C-Desk + + +

SysAid + + + + y/n

osTicket + + + +

ngDesk + 2 + + comm. +

Hesk + 1 rating

ManageEngine

ServiceDesk

Plus

+ + + + comm. +

HelpDeskZ + + + rating

Web Help Desk

by SolarWinds

+ + + rating +

HelpSpot + 2 + +

 Structuring and Controlling the Knowledge for the Software User Support 199

that scale. This is analyzed from a different perspective by Sutton (2020) stating that

“general methods that leverage computation are ultimately the most effective” (when

compared with methods trying to leverage human knowledge). As Sutton rightfully

declares two methods outstand in their capability to scale - search and learning. These

are the main methods we are willing to base our model upon.

The cornerstone design ideas for the LAVA model are:

• close mutual integration between the Knowledge store and the user service

process;

• User is provided with the useful knowledge (context dependent FAQ) instantly

as she activates LAVA; LAVA learns what is useful from user experience;

• Apart from the FAQ user is provided with means to search relevant knowledge

– keyword search, topic browsing and navigating hyperlinks;

• User communicates with a service desk when fails to find useful knowledge;

service desk may add new knowledge to the Knowledge store to help other

users;

• Knowledge store is used both by a user to find solutions and by support staff to

find similar cases that could be used for the user request in question;

• LAVA is integrated with the ticketing software in use; LAVA cares for

communication with the user while the ticketing software handles ticket

management, including SLA management, ticket routing etc.

LAVA uses five main data stores (Figure 1).

Figure 1. LAVA high level architecture (Rats and Pede, 2020).

200 Rāts and Pede

Knowledge store is a set of knowledge items where each knowledge item comprises

a number of attributes:

• question text;

• answer body (html text with hyperlinks to other knowledge items and media

files (images, video);

• list of topics the item belongs to;

• list of contexts (UI item ids) of the Supported software product the item is

relevant to;

• more attributes like related product module, version etc.

Action log saves user action data as a user opens the items of the Knowledge Store.

Action log data are used to calculate the Range Matrix.

Range Matrix ranges knowledge items against the context (the Product UI items).

Matrix is used to decide what knowledge items and in what order to show the user when

she invokes LAVA.

Conversation History holds the support conversation data while Conversation

Context is there to save the general conversation data like status and user context when

activating the conversation.

3.1. Actors and Processes

LAVA model is based on a communication process between three actors – the User, the

Service desk employee (Employee) and LAVA. The process can be described using

CBR paradigm (Table 2).

Table 2. LAVA communication process (Rats and Pede, 2020).

Process Description Actor

RETRIEVE Retrieves and presents to the user context related

Knowledge items. Collaborative filtering (FAQ lists -

items preferred by other users) and content-based

approach (full-text search) used.

LAVA

REUSE Uses items presented by LAVA, or navigates through

topic hierarchy, or searches or opens a support request

User

Logs user actions in an Activity Log and calculates the

Range Matrix

LAVA

REVISE Analyses the user support request and creates or

modifies knowledge item(s)

Support

RETAIN Saves the Knowledge item updates LAVA

 Structuring and Controlling the Knowledge for the Software User Support 201

The model provides following options for a User:

• context dependent ranged FAQ list (section 3.2);

• full-text search in the Knowledge store (section 3.3);

• navigation through a hierarchy of knowledge topics (section 3.3);

• communication with Service desk staff (section 3.5).

LAVA is designed to reduce traffic of User’s service requests. The reason why the

user creates a service request is because she has a problem she cannot solve easily on her

own. The first three options above are aimed at helping the user to find the solution thus

reducing the number of service requests.

The Service desk has the following means:

• tools for handling the Knowledge store, including item filtering and search

integrated in knowledge item editing page; this allows to search for similar

items in Knowledge store (and to avoid creating duplicate items) and to create

hyperlinks easily;

• tools for maintaining the topic hierarchy and linking knowledge items to topics

• workflow management means to handle item creation and confirmation;

• tools to handle user service requests.

3.2. Ranged context-sensitive FAQ

Table 3. Creating the ranged context-sensitive FAQ.

Log user activities LAVA logs user activities of types - open (user opens the knowledge

item), admit (user rates an item as being useful), reject (not useful) and

use link (user clicks a link in the knowledge item content). Every type of

activity has a weight used for range calculation. Activities are logged

against user context – a UI item id of the supported product the user has

activated LAVA with.

Calculate item

ranges

LAVA calculates periodically the range matrix. The range matrix is

calculated against the available contexts and knowledge items using the

formula 1 (see below).

Assemble and

present a ranged

FAQ

LAVA gets the context id upon activation and retrieves the range matrix

part for this id. The ranges of the knowledge items are updated then

adding a constant (configurable) value to ranges of all items declared by

the service desk relevant for the given context. The list of top ranges is

assembled after that.

Another means of knowledge item selection is used if there are not

enough (a configurable amount) items in FAQ after the first step (this

may occur in particular during the initial period of LAVA use in

production). Each context can be associated by the service desk with a set

of keywords. The keyword search is used against this keyword set to

retrieve additional items for the FAQ.

202 Rāts and Pede

One of the LAVA model priorities is to present a user with useful information as soon as

she activates LAVA. This is done by the process outlined in Table 3.

The range Aij for knowledge item Zj and context Si is calculated by the following

formula (Rats and Pede, 2020).

𝐴𝑖𝑗 =

{

 10, 𝑖𝑓 𝑡ℎ𝑒 𝐸𝑚𝑝𝑙𝑜𝑦𝑒𝑒 𝑙𝑖𝑛𝑘𝑠 𝑍𝑗𝑡𝑜 𝑆𝑖

 𝐴𝑖𝑗 + 𝛼, 𝑖𝑓 𝑈𝑠𝑒𝑟 𝑜𝑝𝑒𝑛𝑠 𝑍𝑗𝑓𝑜𝑟 𝑆𝑖

 𝐴𝑖𝑗 + 𝛽, 𝑖𝑓 𝑈𝑠𝑒𝑟 𝑢𝑠𝑒𝑠 𝑟𝑎𝑡𝑒𝑠 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑙𝑦 𝑍𝑗 𝑓𝑜𝑟 𝑆𝑖
 𝐴𝑖𝑗 + 𝛾, 𝑖𝑓 𝑈𝑠𝑒𝑟 𝑢𝑠𝑒𝑠 𝑙𝑖𝑛𝑘 𝑍𝑗 𝑓𝑜𝑟 𝑆𝑖

𝑚𝑎𝑥 (1, 𝐴𝑖𝑗 − δ), 𝑖𝑓 𝑈𝑠𝑒𝑟 𝑟𝑎𝑡𝑒𝑠 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑙𝑦 𝑍𝑗 𝑓𝑜𝑟 𝑆𝑖

 (1)

Parameters α, β, γ and δ are called action weights. They are integers in range [1, 9]

and will be obtained from empirical evidence (see section 5.2).

We assume the same user will access a particular knowledge item merely a couple of

times. There is no ground, thus, to suppose the importance of user actions should

depend on time (e.g. – newer actions are more important than older ones).

3.3. Search

LAVA model exploits advanced search means of the Elasticsearch engine (WEB b;

Rats, 2018):

• ranged full-text search; ranged search allows to score search results against

the relevance function and retrieve top results;

• filtering against a number of knowledge context parameters (Product

module, Product version range etc.).

To create ranged context-sensitive FAQ lists LAVA uses filtering and the range

matrix.

LAVA model incorporates a number of Elasticsearch means to ensure as much of the

relevant information is returned as possible. The custom-built text analyzer lava_latvian

is created for Elasticsearch full-text search that addresses some important general and

Latvian language specific issues. The steps of the lava_latvian analyzer are described in

Table 4. The analyzer is used both when indexing and searching. Thus, the index of a

text is lowercase with stop words excluded, converted to stemmed form and to the main

form of the synonym list (if in the synonym dictionary). The same happens when

searching – this ensures that when a word in some form (or one of the synonyms)

searched, words in other forms (and other synonyms) are matched.

Table 4. The analyzer lava_latvian.

Step Description

lowercase Converts the text to lowercase.

latvian_stop Removes from the analyzed text the words from the Latvian

stop list (custom created for LAVA).

latvian_stemmer Converts the words to the stemmed form.

lava_synonym Converts the words from the synonym list to the main form.

 Structuring and Controlling the Knowledge for the Software User Support 203

It should be stressed that the lava_latvian synonym dictionary is built on stems, not

words.

3.4. Topics

The topic hierarchy of the LAVA model is based on the following principles:

• There is exactly one root topic - a topic of the highest level;

• A topic is allowed to have several child topics and several parent topics;

• A topic of any level is allowed to have related knowledge items;

• The topic hierarchy should be organized in a way that a parent topic would

have 3 to 8 child topics;

• Topics and knowledge items should be organized in a way to reduce as

much as possible the summary distance of the knowledge items from the

top.

The navigation in the topic hierarchy is as follows. The user initially is presented

with the topic of the highest level. LAVA presents the user with a list of links to the next

level topics and a list of links to the knowledge items related to the topic (if any). When

the user clicks on a child topic she is presented with the same data for the child topic.

3.5. Communicating with Service Desk

Two-level model is frequently exploited to organize user support. Power users (the first

level user service) handle routine, recurring user requests and escalate to the second level

only what they are not able to address themselves. There are several ground reasons for

selecting this model:

• the two-level model allows to reduce the volume of service requests at a

second level that might be responsible for supporting a large number of

users;

• the two-level support helps to keep inside the organization the content of the

support calls that frequently contain confidential data.

Unfortunately, this model locks inside the organization as well the knowledge of

potential value for other organizations. In particular, the second level service desk has

little knowledge about the routine problems of the end users.

The LAVA model addresses this with its bidirectional process of the knowledge

sharing. LAVA Knowledge Store is persisted in a cluster of nodes – main node (main

store) plus node for each Product instance (instance store). Knowledge on instance nodes

may be propagated to the main node while knowledge on the main node may be

disseminated to the instance nodes. The first level support staff has control over what

knowledge is propagated thus allowing to propagate useful knowledge and to protect the

sensitive data at the same time.

The knowledge cluster is maintained as follows:

• The initial content of the Knowledge Store is created in the main node and

disseminated to the instance nodes according to the instance licenses (e.g.

what modules of the Product are licensed);

204 Rāts and Pede

• Power users (first level support) may add knowledge to the instance store

and allow (or disallow) the newly created items to be propagated to the main

node.

Two attributes are introduced in the data model of the Knowledge store to control the

knowledge propagation and dissemination process:

• Attribute mode defines if the knowledge item is considered as specific for

his organization (mode S) or as generally useful (mode P); only mode P

items are allowed to be propagated; the attribute is controlled by the first

level support;

• Attribute span allows to tell apart the general knowledge items (created on

the main node, span D) from the instance specific knowledge items (created

on instance node, span I). The second level support is in charge of

transforming I items to D items (this may or may not include some editing

of the item content).

The LAVA model proposes two channels to communicate service requests:

• User comments submitted while viewing the knowledge item; those are

converted by LAVA to knowledge item specific service requests;

• General service requests, submitted in a dedicated web page.

Service requests are handled by the same LAVA model process no matter what

channel was used to create them.

4. Considerations for success

The success of the LAVA model is determined by two parties involved – the end users

and the service desk staff. We believe the end users will use LAVA actively if it allows

them to easily find quality knowledge useful to solve their current problems. Table 5

brings some details of what we mean by “easily find”, “quality knowledge” and

“useful”.

It is important as well that a user has an option to communicate easily with a support

staff in cases when she fails to find the answer in LAVA knowledge base. The LAVA

model supports that by allowing to create as needed both general and knowledge item

dedicated service requests.

It is of crucial importance to create an initial Knowledge store of such volume and

quality that a User could easily find answers to the significant part of routine questions.

LAVA may be deployed for the production use only after this is done as otherwise the

bad first experience may discourage users from searching the solutions in the LAVA

Knowledge store and revert them to addressing all questions to the service desk.

 Structuring and Controlling the Knowledge for the Software User Support 205

5. Measuring the success

LAVA is meant to provide Users with a content relevant to their current needs. LAVA

processes of creating FAQs and searching relevant items are parametrized hence it is

important to have means for performance measuring and parameter evaluation. Below in

section 5.2 we describe the parameter evaluation for FAQs creation.

5.1. LAVA model parameters

LAVA model has a number of configurable parameters:

 maximum and minimum number of items to show on FAQ list;

 minimum item range to show on FAQ list;

 action weights (see section 3.2);

 time period between consecutive range matrix creations;

Table 5. Quality answer.

Easy to find Ranged context-dependent FAQs, full-text search and topic navigation are the

LAVA means that should help user to get the necessary knowledge quickly and

easily. If user searches for solution to a routine problem the FAQ may very well

contain the necessary solution. If no – the LAVA customized full-text search or

navigating well-structured topics may help.

Quality

knowledge

Users today are not tempted to read through lengthy manuals to find a bit of

knowledge they need. The knowledge items should be structured in a way that

user would search knowledge items not a knowledge inside a particular item.

This means that any lengthy description of a complicated process must be split

into several knowledge items. The main item should comprise a high-level

description and refer to other items describing any details. The level of

granularity of the Knowledge store should allow user to comprehend easily any

particular knowledge bit. The granularity is important as well because

knowledge items are the bits of knowledge the rating and ranging mechanism of

LAVA is based on.

The content and form of each knowledge item is of great value as well. Clear

and easily understandable language, text formatting that emphasizes the most

important notions, images and videos created to help understanding are crucial.

Useful

knowledge

We assume that user activates LAVA assistant because she has a problem while

using a Product to carry out a specific business task. The problem might be

about what features of the Product should be used still the business problem is

primary while the features of the Product are here to support business tasks.

This means that useful knowledge items should be aimed at solving business

tasks, not at describing the Products features.

206 Rāts and Pede

 boost factor of question field (defines its relative importance for search

compared to the answer field);

 the synonym dictionary etc.

The performance of the LAVA model depends on the values of the configuration

parameters. E.g. the content and item order of a FAQ list depends (apart from the user

actions) on action weights, minimum item range, and maximum and minimum number

of items. The content and order of items returned by search, in turn, depends on the

boost factor and the contents of the synonym dictionary. LAVA model uses simulation

to evaluate what parameters are better. The simulation uses user action data collected by

LAVA model.

5.2. Parameter evaluation for FAQs creation

The FAQ lists are meant to contain the most relevant knowledge items ordered

descending by relevance range. Although each user has specific needs we should

statistically observe that users open and positively evaluate items at the top more than

items at the bottom of a FAQ list (or not in the list). This way it is reasonable to evaluate

a parameter set from this perspective – how knowledge item positions on FAQ lists

match what users select and how they evaluate. As long as positions depend on ranges

and they in turn depend on the configuration parameters this gives us a method to

evaluate LAVA parameters.

We base our model of parameter evaluation on assumption that positions closer to

the top of a FAQ are more important and this importance can be declared to be

proportional to number of expected clicks on a position. We use a google search click

through analysis data to deduce an empiric position importance formula. The data in

(Wadsack, 2015) shows the top position accounts for 17% to 58% of all clicks

depending on a search domain. This makes a 27% on average for the top position. Other

sources present similar results.

Analysing the click through data of the top 10 positions in the referred and other

sources we concluded that a good approximation of the click through Ti for position i

can be obtained by formula 2.

𝑇𝑖 =
1

µ ∗ 𝑖

(2)

Here Ti is the probability that a user clicks on the row i. The probability pin user

clicks on any of the m rows is a sum of Ti for all the rows. The probability pin can be

calculated in our case because we have log data on what searches user executed and

what rows of the search results user selected. We can execute for the given set of

parameters the searches and determine if a particular item is on the search results. This

way we can deduce the formula 3 to calculate parameter µ.

µ =
1

𝑝𝑖𝑛
∑

1

𝑖

𝑚

𝑖=1

(3)

 Structuring and Controlling the Knowledge for the Software User Support 207

As far as we have position weights and parameter µ we can use formula 4 to

calculate ranges for action types.

𝐶𝑥 =
100

𝜇 ∗ 𝑇
∑

𝑆𝑖
𝑖

𝑚

𝑖=1

(4)

Where x is an action type (O - open, Y – rate positively, L – hyperlink click or N –

rate negatively), T is a total number of user actions, m is a number of rows in a FAQ list,

Si – a number of times users have performed action of type x with a knowledge item in

position i of the FAQ.

The overall range of the parameter configuration C is calculated then as follows

(formula 5):

𝐶 = 𝐶𝑜 + 𝐶𝑦+𝐶𝑙 − 3 ∗ 𝐶𝑛 (5)

Where Co, Cy, Cl and Cn are ranges for action types O, Y, L and N respectively.

Grid search (grid sampling) (Brownlee, 2021) will be used to generate parameter

configurations for evaluation. The grid will be based on parameter values close to

currently used.

Some other performance metrics for LAVA model are presented in (Rats and Pede,

2020).

6. Conclusions and future work

The model of a smart user Support Assistant LAVA is developed. LAVA provides a

Product User with context-related knowledge that should help her to solve by herself

most of the routine issues and thus reduce the amount of support requests. LAVA

Knowledge Store is persisted on a cluster of nodes – main node plus instance nodes.

Knowledge may be propagated from instance to the main node and disseminated from

the main node to the instance nodes that enables users of the instance to keep sensitive

data inside while allowing to share useful knowledge with others.

LAVA end user has several information retrieval options – context-dependent FAQ

lists, customized full-text search and a hierarchy of topics. Service desk staff in turn has

a number of means allowing to monitor and improve the Knowledge store (i.e. using the

knowledge obtained during the service request handling) and to use its knowledge while

handling service requests.

The prototype of LAVA model is developed as a web application using python with

flask framework, javascript and bootstrap. Elasticsearch is used for data persistence and

Kibana for visualization.

Currently the LAVA prototype is proposed for beta testing to several customers. The

data collected during the testing will be used in particular for performance measurement

and for evaluation and configuration of the LAVA parameters.

208 Rāts and Pede

List of abbreviations

CBR Case-based Reasoning

FAQ Frequently Asked Questions

LAVA Smart assistant for the user support (Latvian acronym).

UI User Interface

Acknowledgements

The research has received funding from the project "Competence Centre of Information

and Communication Technologies" of EU Structural funds, contract

No. 1.2.1.1/18/A/003.

References

Aamodt, A., Plaza, E. (1994) Case-Based Reasoning: Foundational Issues, Methodological

Variations, and System Approaches. AI Communications. IOS Press.

Brownlee, J. (2021) Random Search and Grid Search for Function Optimization,

https://machinelearningmastery.com/random-search-and-grid-search-for-function-

optimization/

Fontanella, C. (2020) The Top 14 Free Help Desk Software and Ticketing Systems in 2020,

https://blog.hubspot.com/service/free-help-desk-software

Graw, M. (2021) Document360 review | TechRadar,

https://www.techradar.com/reviews/document360-review

Raman, V. (2017) Recommender Engine — Under The Hood - Towards Data Science,

https://towardsdatascience.com/recommender-engine-under-the-hood-7869d5eab072

Rats, J. (2018) ‘Optimizing the enterprise search’, in Proceedings - 2017 4th International

Conference on Mathematics and Computers in Sciences and in Industry, MCSI 2017. doi:

10.1109/MCSI.2017.20.

Rats, J., Pede, I. (2020) ‘Using a Context Based Knowledge for Software Product User Support’,

in 2020 61st International Scientific Conference on Information Technology and Management

Science of Riga Technical University, ITMS 2020 - Proceedings. Institute of Electrical and

Electronics Engineers Inc. doi: 10.1109/ITMS51158.2020.9259307.

Sutton, R. (2020) The Bitter Lesson of Machine Learning,

https://www.kdnuggets.com/2020/07/bitter-lesson-machine-learning.html

Trujillo, E. (a). GitHub - mayanksingh2298/food-recommender,

https://www.groovehq.com/blog/automated-customer-service.

Wadsack, J. (2015) Are Averaged Google Organic Search Click Through Rates Useful? - Keylime

Toolbox, https://www.keylimetoolbox.com/seo/are-averaged-google-organic-search-click-

through-rates-useful/

WEB (a). Customer Service Software for Small to Enterprise Businesses,

https://www.hubspot.com/products/service

WEB (b). Elasticsearch: The Definitive Guide [master] | Elastic,

https://www.elastic.co/guide/en/elasticsearch/guide/master/index.html

WEB (c). Fully featured knowledabse software – KBPublisher,

https://www.kbpublisher.com/features/

WEB (d). Jira Service Desk | Atlassian, https://www.atlassian.com/software/jira/service-

desk/features

 Structuring and Controlling the Knowledge for the Software User Support 209

WEB (e). osTicket, https://osticket.com/features/

WEB (f). Free Helpdesk Software | IT Helpdesk | HR Helpdesk | Admin Helpdesk,

http://www.cdesk.in/Support_Management/Support_Management.aspx

WEB (g). Help Desk Software (IT Support Software) - Get Free Trial | SysAid,
https://www.sysaid.com/help-desk-software

WEB (h). Help Desk Software HESK - a free PHP help desk, https://www.hesk.com/

WEB (i). HelpDeskZ :: Support Ticket System, https://www.helpdeskz.com/

WEB (j). HelpSite: Make a Knowledge Base / Support Center - for free! https://helpsite.com/

WEB (k). ngDesk | The best platform for your business, https://ngdesk.com/

WEB (l). IT help desk software key features | Features of a good help desk ticket management

system, https://www.manageengine.com/products/service-desk/help-desk-features.html

WEB (m). Just Enough Help Desk Software | HelpSpot,

https://www.helpspot.com/help-desk-software

WEB (n). Online FAQ Software | Build Your Free FAQ System,

https://www.proprofs.com/knowledgebase/faq-software/

WEB (o). Support Hero, https://www.supporthero.com/

WEB (p). Web Help Desk - IT Ticketing Software | SolarWinds,

https://www.solarwinds.com/web-help-desk

WEB (q). Zoho Desk | Customer Service Software for Context-Aware Support,

https://www.zoho.com/desk/

Received March 17, 2021, revised April 28, 2021, accepted May 6, 2021

