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Abstract. The research aims to create a smart user Support Assistant LAVA – a solution providing 

context sensitive and user experience aware support to a user of a software product. The solution is 

based on machine learning and search in a two-level distributed knowledge store. LAVA model 

focuses on providing user on a mouse click with a content relevant to a current context. LAVA 

uses context transferred from the supported product to instantly show a FAQ list of items used 

and/or positively rated by other users in the same context. Full-text search and a topic hierarchy 

are provided as well to cover as many of cases as possible given the content available currently in 

the Knowledge base. Main design ideas of the LAVA model are presented in the article including 

the calculation of ranges and creation of ranged context-sensitive FAQs, customizing the full-text 

search, organizing the topic hierarchy and integrating with the Service desk. The article covers as 

well the main considerations on how the LAVA model should be implemented in a successful 

solution, and a description of method to evaluate the model performance. 

Keywords: user support, case-based reasoning, context-sensitive knowledge, machine-learning, 
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1. Introduction 

The aim of our research is to create a framework for a smart user Support Assistant 

LAVA (Latvian acronym) - an automated service desk solution to support a user of a 

software product (Product). The main benefits of our solution are: 

 improved user training based on an easily accessible context-sensitive 

Knowledge store of answers to routine questions of the users; 

 reduced amount of time spent by support staff on answering routine 

questions as the staff adds the related knowledge to the Knowledge store 

immediately accessible for other users. 

As stated in (Trujillo, a) the real problem with customer support automation lies with 

an over-reliance on technology to do the jobs best left for real, live people. The 

technology should be used for routine, recurrent tasks while leaving the more 

complicated, less frequent ones to the human. In other words - humans should “do things 

that don’t scale” (Trujillo, a). We believe accordingly that humans should talk to each 

other while software should focus on things like user action logging and analysis, 

advanced search and support for knowledge management. Our solution therefore is not 
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going to pretend to be a chatbot but rather to provide a simple and user-friendly interface 

for access to context sensitive knowledge (Rats and Pede, 2020).  

It is frequently stated that the aim of the support automation is to reduce or eliminate 

the need for human involvement when providing advice or assistance to user requests 

(Trujillo, a). This definition is a bit one-sided as it overlooks another source of the 

improvement – reducing the user need to create support requests in the first place. This 

can be achieved by better integration of knowledge management with user support and 

issue tickets management. 

User support for a software product is mainly structured in two levels. The first level 

serves the users of a particular Product instance (e.g. the users of a specific institution) 

and is run by so-called power users. The power users handle routine problems raised at 

the Product instance level and escalate the service requests to the second level if 

necessary. The second level in turn is operated by the support staff of the Product 

provider. 

This architecture has advantages and disadvantages. The most important 

disadvantage is that the second level support deals only with the end user problems 

escalated by power users. The rest (i.e. routine problems) stays locked inside the first 

level support unit and thus cannot be used by the second level support for the benefit of 

users of the rest of Product instances. We address this disadvantage in our solution by 

providing a mechanism of knowledge sharing between two levels of support. 

2. Related work 

Our research mainly focuses on defining self-service knowledge store based automated 

process for the software product users that would help them to find answers for routine 

questions and thus would reduce the requests to the Service desk. 

One of the domains related to our research is recommender systems. There are 

basically two types of recommender systems, Content-based and Collaborative filtering 

(Raman, 2017). Content-based systems recommend similar items while collaborative 

filtering systems recommend items that relate to similar users (e.g. user bought also this). 

We use both approaches for our model. 

Another technology related to our research is Case-based reasoning (CBR). CBR 

utilizes the specific knowledge of previously experienced problem situations (cases). A 

new problem is solved by finding a similar past case, and reusing it in the new problem 

situation. CBR also is an approach to incremental, sustained learning, since a new 

experience is retained each time a problem has been solved, making it immediately 

available for future problems (Aamodt and Plaza, 1994). 

At the highest level a CBR cycle may be described by the following four processes 

(Aamodt and Plaza, 1994): 

• RETRIEVE the most similar case or cases; 

• REUSE the information and knowledge in that case to solve the problem; 

• REVISE the proposed solution; 

• RETAIN the parts of this experience likely to be useful for future problem 

solving. 

We use CBR process steps in our model as described in section 3.1. 
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2.1. FAQ and Knowledge Base software 

A well-planned FAQ (Frequently Asked Questions) section is one of the tools that 

should help users to find solutions for themselves and thus to reduce the amount of 

service requests. A basic FAQ system comprises several groups of FAQ items and 

provides users with means to select an item group, browse and expand the questions to 

the relevant solution. This is enough if the FAQ contains up to a hundred or so items. 

The lack of more advanced means for information search restricts the ability of the FAQ 

system to grow the amount of the information. Either the less frequently used items must 

be removed from the FAQ or more advanced means must be introduced. 

The search is the next information location means to consider. A number of FAQ 

solutions provide means for information search. Examples are Document360 (Graw, 

2021), ProProofs Knowledge base (WEB, n) and HelpSite (WEB, j). 

FAQ solutions may have a number of other features that mainly address needs of a 

support staff – like workflows and revision history (WEB, n) collaboration (WEB, c) and 

statistics (WEB, o). Still item grouping and search are the main end user means of the 

basic FAQ solutions. 

Knowledge base functionality is provided as well by a number of helpdesk and 

ticketing systems. 

2.2. Helpdesk and Ticketing solutions 

Fontanella (2020) lists 14 freeware and commercial software and ticketing systems rated 

there as the top solutions for 2020. All but two (Agiloft and Spiceworks) of the listed 

systems feature knowledge base in some form.  

Table 1 outlines knowledge base related features of the referred systems HubSpot's 

Service Hub (WEB, a), Jira Service Desk (WEB, d), Zoho Desk (WEB, q), C-Desk 

(WEB, f), SysAid (WEB, g), osTicket (WEB, e), ngDesk (WEB, k), Hesk (WEB, h), 

ManageEngine ServiceDesk Plus (WEB, l), HelpDeskZ (WEB, i), Web Help Desk by 

SolarWinds (WEB, p) and HelpSpot (WEB, m). Number in Topic Hierarchy column 

designates supported levels of topic hierarchy. 

Knowledge bases of the listed systems as a rule feature article creation, topic 

hierarchy, search, tagging, embed media and user feedback. Most of them provide as 

well an access control.  

Knowledge bases mainly are not context-sensitive though. The following interesting 

exceptions exist though: 

• HubSpot’s service Hub provides a related articles feature; related articles are 

automatically chosen based on their relevance to the current article, that 

automatically adjusts based on article performance and visitor engagement; 

• osTicket and ManageEngine ServiceDesk Plus both provide an option to link 

articles manually to help topics. 
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We did not find though any indication that the reviewed solutions (Helpdesk or 

FAQ) would use context information from the supported software product. Namely – a 

reference to a user interface item the user is activating a helpdesk system. The product 

interface page (form) user activates a help system should be significantly related to what 

a user is currently doing. Hence this can be used to determine what knowledge is most 

relevant and should be presented to the user upon the activation. 

3. Proposed Solution 
 

We follow in our model the recommendation that humans should “do things that don’t 

scale” (Trujillo, a). In other words – our model should be aimed at automating things 

Table 1. Helpdesk and Ticketing systems. 

Brand Search Topics Categories, 

keywords, 

tags 

Embed 

media 

Feed-

back 

Access 

control 

HubSpot's 

Service Hub  

+ 2 + + y/n + 

Jira Service 

Desk 

+ + + + comm. + 

Zoho Desk + 4 + + + + 

C-Desk + +  +   

SysAid + + + + y/n  

osTicket + + + +   

ngDesk + 2 + + comm. + 

Hesk + 1   rating  

ManageEngine 

ServiceDesk 

Plus 

+ + + + comm. + 

HelpDeskZ + +  + rating  

Web Help Desk 

by SolarWinds 

+ +  + rating + 

HelpSpot + 2 +   + 
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that scale. This is analyzed from a different perspective by Sutton (2020) stating that 

“general methods that leverage computation are ultimately the most effective” (when 

compared with methods trying to leverage human knowledge). As Sutton rightfully 

declares two methods outstand in their capability to scale - search and learning. These 

are the main methods we are willing to base our model upon. 

The cornerstone design ideas for the LAVA model are: 

• close mutual integration between the Knowledge store and the user service 

process; 

• User is provided with the useful knowledge (context dependent FAQ) instantly 

as she activates LAVA; LAVA learns what is useful from user experience; 

• Apart from the FAQ user is provided with means to search relevant knowledge 

– keyword search, topic browsing and navigating hyperlinks; 

• User communicates with a service desk when fails to find useful knowledge; 

service desk may add new knowledge to the Knowledge store to help other 

users; 

• Knowledge store is used both by a user to find solutions and by support staff to 

find similar cases that could be used for the user request in question; 

• LAVA is integrated with the ticketing software in use; LAVA cares for 

communication with the user while the ticketing software handles ticket 

management, including SLA management, ticket routing etc. 

 

LAVA uses five main data stores (Figure 1). 

 

 
 

Figure 1. LAVA high level architecture (Rats and Pede, 2020). 
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Knowledge store is a set of knowledge items where each knowledge item comprises 

a number of attributes: 

• question text; 

• answer body (html text with hyperlinks to other knowledge items and media 

files (images, video); 

• list of topics the item belongs to; 

• list of contexts (UI item ids) of the Supported software product the item is 

relevant to; 

• more attributes like related product module, version etc. 

 

Action log saves user action data as a user opens the items of the Knowledge Store. 

Action log data are used to calculate the Range Matrix. 

Range Matrix ranges knowledge items against the context (the Product UI items). 

Matrix is used to decide what knowledge items and in what order to show the user when 

she invokes LAVA. 

Conversation History holds the support conversation data while Conversation 

Context is there to save the general conversation data like status and user context when 

activating the conversation. 

 

3.1. Actors and Processes 

LAVA model is based on a communication process between three actors – the User, the 

Service desk employee (Employee) and LAVA. The process can be described using 

CBR paradigm (Table 2). 

Table 2. LAVA communication process (Rats and Pede, 2020).

Process Description Actor 

RETRIEVE Retrieves and presents to the user context related 

Knowledge items. Collaborative filtering (FAQ lists - 

items preferred by other users) and content-based 

approach (full-text search) used. 

LAVA 

REUSE Uses items presented by LAVA, or navigates through 

topic hierarchy, or searches or opens a support request 

User 

Logs user actions in an Activity Log and calculates the 

Range Matrix 

LAVA 

REVISE Analyses the user support request and creates or 

modifies knowledge item(s) 

Support 

RETAIN Saves the Knowledge item updates LAVA 
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The model provides following options for a User: 

• context dependent ranged FAQ list (section 3.2); 

• full-text search in the Knowledge store (section 3.3); 

• navigation through a hierarchy of knowledge topics (section 3.3); 

• communication with Service desk staff (section 3.5). 

 

LAVA is designed to reduce traffic of User’s service requests. The reason why the 

user creates a service request is because she has a problem she cannot solve easily on her 

own. The first three options above are aimed at helping the user to find the solution thus 

reducing the number of service requests. 

The Service desk has the following means: 

• tools for handling the Knowledge store, including item filtering and search 

integrated in knowledge item editing page; this allows to search for similar 

items in Knowledge store (and to avoid creating duplicate items) and to create 

hyperlinks easily; 

• tools for maintaining the topic hierarchy and linking knowledge items to topics 

• workflow management means to handle item creation and confirmation; 

• tools to handle user service requests. 

3.2. Ranged context-sensitive FAQ 

Table 3. Creating the ranged context-sensitive FAQ. 

 

Log user activities LAVA logs user activities of types - open (user opens the knowledge 

item), admit (user rates an item as being useful), reject (not useful) and 

use link (user clicks a link in the knowledge item content). Every type of 

activity has a weight used for range calculation. Activities are logged 

against user context – a UI item id of the supported product the user has 

activated LAVA with. 

Calculate item 

ranges 

LAVA calculates periodically the range matrix. The range matrix is 

calculated against the available contexts and knowledge items using the 

formula 1 (see below). 

Assemble and 

present a ranged 

FAQ 

LAVA gets the context id upon activation and retrieves the range matrix 

part for this id. The ranges of the knowledge items are updated then 

adding a constant (configurable) value to ranges of all items declared by 

the service desk relevant for the given context. The list of top ranges is 

assembled after that. 

Another means of knowledge item selection is used if there are not 

enough (a configurable amount) items in FAQ after the first step (this 

may occur in particular during the initial period of LAVA use in 

production). Each context can be associated by the service desk with a set 

of keywords. The keyword search is used against this keyword set to 

retrieve additional items for the FAQ. 
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One of the LAVA model priorities is to present a user with useful information as soon as 

she activates LAVA. This is done by the process outlined in Table 3. 

The range Aij for knowledge item Zj and context Si is calculated by the following 

formula (Rats and Pede, 2020). 

 

𝐴𝑖𝑗 =

{
 
 

 
 

      10,                𝑖𝑓 𝑡ℎ𝑒 𝐸𝑚𝑝𝑙𝑜𝑦𝑒𝑒 𝑙𝑖𝑛𝑘𝑠 𝑍𝑗𝑡𝑜 𝑆𝑖      

       𝐴𝑖𝑗 + 𝛼,           𝑖𝑓 𝑈𝑠𝑒𝑟 𝑜𝑝𝑒𝑛𝑠 𝑍𝑗𝑓𝑜𝑟 𝑆𝑖                         

               𝐴𝑖𝑗 + 𝛽,          𝑖𝑓 𝑈𝑠𝑒𝑟 𝑢𝑠𝑒𝑠 𝑟𝑎𝑡𝑒𝑠 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑙𝑦 𝑍𝑗  𝑓𝑜𝑟 𝑆𝑖
            𝐴𝑖𝑗 + 𝛾,          𝑖𝑓 𝑈𝑠𝑒𝑟 𝑢𝑠𝑒𝑠 𝑙𝑖𝑛𝑘 𝑍𝑗  𝑓𝑜𝑟 𝑆𝑖                      

𝑚𝑎𝑥 (1, 𝐴𝑖𝑗 − δ), 𝑖𝑓 𝑈𝑠𝑒𝑟 𝑟𝑎𝑡𝑒𝑠 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑙𝑦 𝑍𝑗  𝑓𝑜𝑟 𝑆𝑖

 (1) 

  

Parameters α, β, γ and δ are called action weights. They are integers in range [1, 9] 

and will be obtained from empirical evidence (see section 5.2).  

We assume the same user will access a particular knowledge item merely a couple of 

times.  There is no ground, thus, to suppose the importance of user actions should 

depend on time (e.g. – newer actions are more important than older ones). 

 

3.3. Search 

LAVA model exploits advanced search means of the Elasticsearch engine (WEB b; 

Rats, 2018): 

• ranged full-text search; ranged search allows to score search results against 

the relevance function and retrieve top results; 

• filtering against a number of knowledge context parameters (Product 

module, Product version range etc.). 

 

To create ranged context-sensitive FAQ lists LAVA uses filtering and the range 

matrix. 

LAVA model incorporates a number of Elasticsearch means to ensure as much of the 

relevant information is returned as possible. The custom-built text analyzer lava_latvian 

is created for Elasticsearch full-text search that addresses some important general and 

Latvian language specific issues. The steps of the lava_latvian analyzer are described in 

Table 4. The analyzer is used both when indexing and searching. Thus, the index of a 

text is lowercase with stop words excluded, converted to stemmed form and to the main 

form of the synonym list (if in the synonym dictionary). The same happens when 

searching – this ensures that when a word in some form (or one of the synonyms) 

searched, words in other forms (and other synonyms) are matched. 

Table 4. The analyzer lava_latvian. 

Step Description 

lowercase Converts the text to lowercase. 

latvian_stop Removes from the analyzed text the words from the Latvian 

stop list (custom created for LAVA). 

latvian_stemmer Converts the words to the stemmed form. 

lava_synonym Converts the words from the synonym list to the main form. 
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It should be stressed that the lava_latvian synonym dictionary is built on stems, not 

words. 

3.4. Topics 

The topic hierarchy of the LAVA model is based on the following principles: 

• There is exactly one root topic - a topic of the highest level; 

• A topic is allowed to have several child topics and several parent topics; 

• A topic of any level is allowed to have related knowledge items; 

• The topic hierarchy should be organized in a way that a parent topic would 

have 3 to 8 child topics; 

• Topics and knowledge items should be organized in a way to reduce as 

much as possible the summary distance of the knowledge items from the 

top.  

 

The navigation in the topic hierarchy is as follows. The user initially is presented 

with the topic of the highest level. LAVA presents the user with a list of links to the next 

level topics and a list of links to the knowledge items related to the topic (if any). When 

the user clicks on a child topic she is presented with the same data for the child topic. 

3.5. Communicating with Service Desk 

Two-level model is frequently exploited to organize user support. Power users (the first 

level user service) handle routine, recurring user requests and escalate to the second level 

only what they are not able to address themselves. There are several ground reasons for 

selecting this model: 

• the two-level model allows to reduce the volume of service requests at a 

second level that might be responsible for supporting a large number of 

users; 

• the two-level support helps to keep inside the organization the content of the 

support calls that frequently contain confidential data. 

Unfortunately, this model locks inside the organization as well the knowledge of 

potential value for other organizations. In particular, the second level service desk has 

little knowledge about the routine problems of the end users.  

The LAVA model addresses this with its bidirectional process of the knowledge 

sharing. LAVA Knowledge Store is persisted in a cluster of nodes – main node (main 

store) plus node for each Product instance (instance store). Knowledge on instance nodes 

may be propagated to the main node while knowledge on the main node may be 

disseminated to the instance nodes. The first level support staff has control over what 

knowledge is propagated thus allowing to propagate useful knowledge and to protect the 

sensitive data at the same time. 

The knowledge cluster is maintained as follows: 

• The initial content of the Knowledge Store is created in the main node and 

disseminated to the instance nodes according to the instance licenses (e.g. 

what modules of the Product are licensed); 
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• Power users (first level support) may add knowledge to the instance store 

and allow (or disallow) the newly created items to be propagated to the main 

node. 

 

Two attributes are introduced in the data model of the Knowledge store to control the 

knowledge propagation and dissemination process: 

• Attribute mode defines if the knowledge item is considered as specific for 

his organization (mode S) or as generally useful (mode P); only mode P 

items are allowed to be propagated; the attribute is controlled by the first 

level support; 

• Attribute span allows to tell apart the general knowledge items (created on 

the main node, span D) from the instance specific knowledge items (created 

on instance node, span I). The second level support is in charge of 

transforming I items to D items (this may or may not include some editing 

of the item content). 

 

The LAVA model proposes two channels to communicate service requests: 

• User comments submitted while viewing the knowledge item; those are 

converted by LAVA to knowledge item specific service requests; 

• General service requests, submitted in a dedicated web page. 

 

Service requests are handled by the same LAVA model process no matter what 

channel was used to create them. 

4. Considerations for success 

The success of the LAVA model is determined by two parties involved – the end users 

and the service desk staff. We believe the end users will use LAVA actively if it allows 

them to easily find quality knowledge useful to solve their current problems. Table 5 

brings some details of what we mean by “easily find”, “quality knowledge” and 

“useful”. 

It is important as well that a user has an option to communicate easily with a support 

staff in cases when she fails to find the answer in LAVA knowledge base. The LAVA 

model supports that by allowing to create as needed both general and knowledge item 

dedicated service requests. 

It is of crucial importance to create an initial Knowledge store of such volume and 

quality that a User could easily find answers to the significant part of routine questions. 

LAVA may be deployed for the production use only after this is done as otherwise the 

bad first experience may discourage users from searching the solutions in the LAVA 

Knowledge store and revert them to addressing all questions to the service desk. 
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5. Measuring the success 

LAVA is meant to provide Users with a content relevant to their current needs. LAVA 

processes of creating FAQs and searching relevant items are parametrized hence it is 

important to have means for performance measuring and parameter evaluation. Below in 

section 5.2 we describe the parameter evaluation for FAQs creation.  

5.1. LAVA model parameters 

LAVA model has a number of configurable parameters: 

 maximum and minimum number of items to show on FAQ list; 

 minimum item range to show on FAQ list; 

 action weights (see section 3.2); 

 time period between consecutive range matrix creations; 

Table 5. Quality answer. 

Easy to find Ranged context-dependent FAQs, full-text search and topic navigation are the 

LAVA means that should help user to get the necessary knowledge quickly and 

easily. If user searches for solution to a routine problem the FAQ may very well 

contain the necessary solution. If no – the LAVA customized full-text search or 

navigating well-structured topics may help. 

Quality 

knowledge 

Users today are not tempted to read through lengthy manuals to find a bit of 

knowledge they need. The knowledge items should be structured in a way that 

user would search knowledge items not a knowledge inside a particular item. 

This means that any lengthy description of a complicated process must be split 

into several knowledge items. The main item should comprise a high-level 

description and refer to other items describing any details. The level of 

granularity of the Knowledge store should allow user to comprehend easily any 

particular knowledge bit. The granularity is important as well because 

knowledge items are the bits of knowledge the rating and ranging mechanism of 

LAVA is based on. 

The content and form of each knowledge item is of great value as well. Clear 

and easily understandable language, text formatting that emphasizes the most 

important notions, images and videos created to help understanding are crucial. 

Useful 

knowledge 

We assume that user activates LAVA assistant because she has a problem while 

using a Product to carry out a specific business task. The problem might be 

about what features of the Product should be used still the business problem is 

primary while the features of the Product are here to support business tasks. 

This means that useful knowledge items should be aimed at solving business 

tasks, not at describing the Products features.  
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 boost factor of question field (defines its relative importance for search 

compared to the answer field); 

 the synonym dictionary etc. 

 

The performance of the LAVA model depends on the values of the configuration 

parameters. E.g. the content and item order of a FAQ list depends (apart from the user 

actions) on action weights, minimum item range, and maximum and minimum number 

of items. The content and order of items returned by search, in turn, depends on the 

boost factor and the contents of the synonym dictionary. LAVA model uses simulation 

to evaluate what parameters are better. The simulation uses user action data collected by 

LAVA model. 

5.2. Parameter evaluation for FAQs creation 

The FAQ lists are meant to contain the most relevant knowledge items ordered 

descending by relevance range. Although each user has specific needs we should 

statistically observe that users open and positively evaluate items at the top more than 

items at the bottom of a FAQ list (or not in the list). This way it is reasonable to evaluate 

a parameter set from this perspective – how knowledge item positions on FAQ lists 

match what users select and how they evaluate.  As long as positions depend on ranges 

and they in turn depend on the configuration parameters this gives us a method to 

evaluate LAVA parameters. 

We base our model of parameter evaluation on assumption that positions closer to 

the top of a FAQ are more important and this importance can be declared to be 

proportional to number of expected clicks on a position. We use a google search click 

through analysis data to deduce an empiric position importance formula. The data in 

(Wadsack, 2015) shows the top position accounts for 17% to 58% of all clicks 

depending on a search domain. This makes a 27% on average for the top position. Other 

sources present similar results.  

Analysing the click through data of the top 10 positions in the referred and other 

sources we concluded that a good approximation of the click through Ti for position i 

can be obtained by formula 2. 

 

𝑇𝑖 =
1

µ ∗ 𝑖
 

(2) 

 

Here Ti is the probability that a user clicks on the row i. The probability pin user 

clicks on any of the m rows is a sum of Ti for all the rows. The probability pin can be 

calculated in our case because we have log data on what searches user executed and 

what rows of the search results user selected. We can execute for the given set of 

parameters the searches and determine if a particular item is on the search results. This 

way we can deduce the formula 3 to calculate parameter µ. 

 

µ =
1

𝑝𝑖𝑛
∑

1

𝑖

𝑚

𝑖=1

 
(3) 
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As far as we have position weights and parameter µ we can use formula 4 to 

calculate ranges for action types. 

 

𝐶𝑥 =
100

𝜇 ∗ 𝑇
∑

𝑆𝑖
𝑖

𝑚

𝑖=1

 
(4) 

 

Where x is an action type (O - open, Y – rate positively, L – hyperlink click or N – 

rate negatively), T is a total number of user actions, m is a number of rows in a FAQ list, 

Si – a number of times users have performed action of type x with a knowledge item in 

position i of the FAQ.  

The overall range of the parameter configuration C is calculated then as follows 

(formula 5): 

 

𝐶 = 𝐶𝑜 + 𝐶𝑦+𝐶𝑙 − 3 ∗ 𝐶𝑛 (5) 

 

Where Co, Cy, Cl and Cn are ranges for action types O, Y, L and N respectively. 

 

Grid search (grid sampling) (Brownlee, 2021) will be used to generate parameter 

configurations for evaluation. The grid will be based on parameter values close to 

currently used. 

Some other performance metrics for LAVA model are presented in (Rats and Pede, 

2020). 

 

6. Conclusions and future work 

The model of a smart user Support Assistant LAVA is developed. LAVA provides a 

Product User with context-related knowledge that should help her to solve by herself 

most of the routine issues and thus reduce the amount of support requests. LAVA 

Knowledge Store is persisted on a cluster of nodes – main node plus instance nodes. 

Knowledge may be propagated from instance to the main node and disseminated from 

the main node to the instance nodes that enables users of the instance to keep sensitive 

data inside while allowing to share useful knowledge with others. 

LAVA end user has several information retrieval options – context-dependent FAQ 

lists, customized full-text search and a hierarchy of topics. Service desk staff in turn has 

a number of means allowing to monitor and improve the Knowledge store (i.e. using the 

knowledge obtained during the service request handling) and to use its knowledge while 

handling service requests. 

The prototype of LAVA model is developed as a web application using python with 

flask framework, javascript and bootstrap. Elasticsearch is used for data persistence and 

Kibana for visualization. 

Currently the LAVA prototype is proposed for beta testing to several customers. The 

data collected during the testing will be used in particular for performance measurement 

and for evaluation and configuration of the LAVA parameters. 
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List of abbreviations 

 

CBR Case-based Reasoning 

FAQ Frequently Asked Questions 

LAVA Smart assistant for the user support (Latvian acronym). 

UI User Interface 
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