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Abstract. The exploration of geometrical patterns stimulates the imagination and encourages
abstract reasoning, which is a distinctive feature of human-level intelligence. In cognitive sci-
ence, Gestalt principles such as symmetry have often explained significant aspects of human
perception. We present a computational technique for building artificial intelligence (AI) agents
that use symmetry as the organizing principle for addressing Dehaene’s test of geometric intelli-
gence. Our work offers symmetry as a core principle for building AI agents capable of geometric
intelligence and understanding Gestalt principles in human perception.
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1 Introduction

George Polya argued that symmetry plays an important role in the inductive phase of
complex problem solving by reducing and ordering the observable facts (Pólya, 1954).
Captivated by visual diagrams of Polya’s work in crystallography, M.C. Escher created
a systematic organization of geometrical transformations and enshrined symmetry as
the principal rule underlying his art (Escher and Schattschneider, 2004). Without sys-
tematic knowledge of the mathematics governing patterns of symmetry, he created his
own ”layman’s theory” of symmetry, duality, infinity, and paradoxes. Escher comes to
the open gate of mathematics by exploring how concepts like repetition, rotation and
reflection shape our interpretation of boundaries between shapes (Haak, 1976).

The artwork Escher produced over his lifetime profoundly challenges our visual
perception of the world. Equally impressive, most humans can understand and appre-
ciate the beauty of Escher’s drawings, even in the absence of previous experience with
them. Consider, for example, just the two graphics shown in Figure 1. It is easy to see
some of the symmetry concepts – such as translation, rotation, and reflection – which
invites questions about the nature of cognitive processes when we perceive this kind of
art.

Indeed, Gestalt psychology has long proposed symmetry as organizing principle
of geometric intelligence (Bornstein et al., 1981),(Li, 2009). Gestalt theories suggest
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that human cognition uses repetition, such as translational symmetry (see example in
Figure 1, left), or perceptual shift between foreground and background (see example
in Figure 1, right) in creating and making sense of art (Tyler, 1995). These theories
raise the basic question motivating our work: Might it be possible to build artificial
intelligence (AI) agents that use the principles of Gestalt psychology to make complex
inferences about geometric patterns and transformations?

Fig. 1: M.C. Escher work inspired by mathematics and nature (Lizards (left) and Bird/Fish (right))

To provide algorithmic answers to this question about designing AI agents, we start
with Dehaene’s test of geometric intelligence (Dehaene et al., 2006) that shares several
themes with Escher’s more intricate structures. Dehaene et. al. describes symmetry as
a geometrical language that adults and children can comprehend regardless of their
culture and background (Amalric et al., 2017). Dehaene developed the test containing
45 problems to examine whether humans brought up in a technologically advanced
civilization with the benefit of formal education, including geometry, performed better
than subjects from a technologically primitive society with little formal education. He
found that subjects from the Mundurku tribe in the Amazon forests performed about as
well on the test as the subjects from a western society. Although Dehaene’s experiments
were not conclusive, they seemed to indicate that core geometric intelligence might be
innate to all humans.

Dehaene’s test eschews geometric objects such as triangles and instead relies on
more abstract concepts such as closure. All 45 problems on the test explore various
aspects of core geometry, such as Euclidean geometry, topology, symmetrical figures,
metric properties, and geometric transformations (Dehaene et al., 2006). Each problem
is an array of six images where one violates the displayed concept, and the test taker
attempts to identify it as the one that breaks the structure. Figure 2 shows an exam-
ple that highlights the above-mentioned concept of closure. Although at first glance,
symmetry is not explicit in Figure 1, we will show below those specific representations
of the drawings in Figure 1 derived from Euclidean transformations capture the latent
symmetry and order in the pictures.

Although Dehaene’s problems are different from Escher’s more intricate drawings,
they nevertheless entail similar, if more straightforward, kinds of abstract reasoning.
Abstract reasoning on Dehaene’s test requires inferences to higher-level concepts such
as relations, symmetries, and intricate patterns from low-level pixel representations.
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Fig. 2: An example of Dehaene’s geometry problems that explores topological concepts of clo-
sure. One image (here, the top center) violates the concept and therefore should be considered as
odd-one-out.

According to Dehaene, using geometrical tests with perceptually accessible features
such as shapes, positions, and between-object relations, a human capacity to reason
abstractly can be measured independent of their culture, language, or experience. This
point brings us back to the research question motivating our research. If Gestalt princi-
ples underlie human perception, might the same principles form the basis for building
AI agents capable of addressing problems on the Dehaene’test? Further, if AI agents
based on Gestalt principles indeed can be built for Dehaene’s test, what may that tell us
about human cognition?

2 Related Work

A common feature among many of these studies is a focus on similarity and especially
analogy. Carpenter et al. provide a detailed cognitive model of problem-solving on
the Raven’s Progressive Matrices Test of general human intelligence (Carpenter et al.,
1990). Their model is based on the production system architecture in which the agent
has access to a variety of rules that capture the range of geometric patterns that occur in
Raven’s test.

Lovett, Lockwood & Forbus (2008) view Raven’s test as geometric analogy prob-
lems and use the structure-mapping theory of analogy to address them. They describe a
cognitively inspired approach that detects geometric shapes from an input drawing on
Raven’s test, constructs spatial representations of relations among the objects, and then
applies the structure-mapping technique for addressing the problem.

Kunda, McGreggor & Goel also view the Raven’s test as a set of visual analogy
problems. However, in contrast to Carpenter et al. and Lovett et al., they use affine
transformations, such as translation, rotation, and reflection, directly on pixel-level rep-
resentations to address the Raven’s test, including the Standard, Color, and Advanced
Raven’s test (Kunda et al., 2013). Given an input image, their ASTI model interprets
the drawing in terms of linear combinations of affine transformations and completes
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the problem in terms of transformation combinations. An exciting aspect of the ASTI
computational model is that it does not have prior knowledge of geometric objects and
does not need to detect objects. Nevertheless, its performance is comparable to that of
earlier methods.

McGreggor, Kunda & Goel describe a method called FAR that makes analogies
based on fractal representations. Given an input image, FAR first builds a fractal repre-
sentation of the input and then uses similarity and analogy to address the problem. The
FAR method has been successfully used for Raven’s intelligence test, and the Odd-One-
Out test (McGreggor and Goel, 2011) and the Dehaene’s test (McGreggor and Goel,
2013). An interesting aspect of the self-similar fractal representations is that the FAR
technique can automatically change the resolution level to match the given problem.
Like ASTI, FAR too does not detect objects in the input images.

Shegheva et al. (2018) have developed a Structural Affinity method to address
Raven’s intelligence (Shegheva and Goel, 2018). The technique uses Markov Random
Fields parameterized by affinity factors to learn the underlying rules described in Car-
penter’s work and subsequently recognize the pattern to make a prediction. The strong
emphasis is on discovering topologies that do not rely on object detection but instead
represent features for the type of relationship between images. Not to be confused with
image similarity methods, the Structural Affinity captures the generation rule that rep-
resents the abstract reasoning ability.

Recently, there has been some work on using CNNs to address similar problems
(Santoro et al., 2017, 2018; Zhang, Gao, Jia, Zhu and Zhu, 2019). So far, this work has
focused on variations of Raven’s problems and not yet addressed Dehaene’s style of
images. For example, Zhang et al. use neural models to generate a dataset of problems
similar to Raven’s test problems and feed them into a module that reasons based on
perceptual contrasts (Zhang, Jia, Gao, Zhu, Lu and Zhu, 2019).

In our earlier work on geometric intelligence, we have used the Gestalt principles of
perception to address several classes of problems, including problems on the Standard,
Colored, Advanced Raven’s tests, and Odd-One-Out tests. The present work builds on
our earlier work; in particular, it is similar to a previous computational technique we
have described for addressing problems on Raven’s Standard test (Shegheva and Goel,
2018).

As noted above, many previous computational models and techniques have viewed
geometric intelligence tests in terms of extant theories of similarity and analogy. In
our current work, we postulate that symmetry plays a fundamental role in how an input
image is perceived and forms the basis for analogy. Leyton proposes symmetry as a fun-
damental element of visual perception and relates it to reconstructing causal histories
(Leyton, 1992). In his book ”A Generative Theory of Shape,” Leyton proposes a con-
structive representation and can capture symmetry-breaking, or symmetry-building, as
a way to reason about the hierarchy of the image components Leyton (2003). Dehaene
et. al. deliberately minimizes the core concept cues in a problem by randomizing the
perceived features. For example, by varying the objects’ orientation or modifying the
size, the concept becomes obscured. We hypothesize that a suitable representation can
undo the complexity and highlight the right context for the desired concept.
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3 Structural Affinity for Core Geometry

In the current work, we build upon the idea of the agreement by constructing different
types of affinity factors, each representing a property of the geometrical concepts cov-
ered in Dehaene’s test (Shegheva and Goel, 2018). The AI agent computes a series of
estimations from each image and determines the one odd-one-out image in two steps:
1) identify the most relevant properties that attribute to significant deviations 2) rank
images by the most considerable contribution of variance.

The rest of this section covers the specifics of our computational technique’s algo-
rithm and individual components, starting with image pre-processing, feature design,
and the algorithm for detecting a violation in latent concept.

3.1 Preliminary Processing

Dehaene’s test’s distinctive feature is that each problem with six images demonstrates
a single core concept with slight variations. A problem is solved if a test taker identifies
the image that contains variation not explained by the concept. Therefore, the proposed
method aims to identify the most likely concept by 1) unifying the representation, i.e.,
reducing superfluous features, and 2) ranking the remaining features by the signal’s
strength towards a single pattern.

Appendix A lists all 45 Dehaene’s images grouped by the concept and ordered by
difficulty. Euclidean Geometry, Geometrical Figures, and Topology (first three rows in
Figure 8) are among the simplest concepts as measured by the performance of partici-
pants of the Amazonian indigenous group Mundurukú. This suggests that geometrical
primitives are easily identified regardless of their orientation, color, alignment, or size.
Problems that test for symmetry, chirality, and metric properties, such as distance, re-
quire an increased level of concentration since they involve spacial operations such as
rotation and reflection. Unlike previous concepts, the induced orientation change had a
more significant impact on making a correct inference. This is especially true for chiral
figures (see Figure 8 - fourth row) where the participants’ performance dropped from
90% to 20% by rotating images along random axes. Geometric Transformations have
the lowest performance score (35%), indicating that reasoning about motion in static
images requires considerable analytical judgment.

In general, we observe that Dehaene’s problems exhibit geometrical primitives that
fall into specific types of symmetry classes, even in cases where the symmetry concept
is not a primary characteristic. For example, problems in the second row of the Fig-
ure 8 intended to highlight Euclidean geometry’s properties, such as distance, can also
be interpreted with symmetry - reflective and rotational. Thus, with the assumption of
preserving the symmetry, our normalization method rotates and translates the original
images, re-mapping the pixels to the common axes. This normalization intensifies the
most relevant features while removing variations intended to obscure the concept.

3.2 Image Segmentation Phase

A Dehaene’s problem is represented as a 3x2 matrix of visual entities that capture
geometrical shapes and transformations. To fit the problem into the structural affinity
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framework, we first identify the grid and segment the images into its six components.
The image is ready to be ingested by our computational technique without additional
image pre-processing steps by applying the segmentation.

3.3 Representation Phase

The segmentation phase for one problem produces six panels that are subsequently
transformed into an n ×m matrix A where each cell i, j takes on a binary value: 1 if
the color intensity of the pixel is above a certain threshold ε, and 0, otherwise. Before
reading the pixels into an array, the image is optionally cropped to remove the pixels
associated with plain text (typically at the top left of the first image).

As Dehaene’s problems target geometry concepts, it makes sense to represent the
images in the Cartesian coordinate system instead of a n ×m matrix where n and m
are the height and the width of the given image. The binary values (0,1) are mapped to
real numbers R+. This representation returns a set of points Ω in the coordinate system
generated by Expression 1.

Ω := {(i, j) | Ai,j = 1, 0 ≤ i ≤ n,≤ j ≤ m} (1)

3.4 Transformation Phase

We use Principal Component Analysis (PCA) method to unrotate the figures and obtain
the coordinate axes that contain the maximum variance (Tipping and Bishop, 1999).
Figure 3(b) shows the result of a successful re-orientation that removes the randomness
in the original axes and brings the symmetry feature into focus.

(a) Original Figures (b) Transformed Figures

Fig. 3: Symmetry Concept. In (a) the concept is shown in its original raw form that include
an orientation noise not relevant to the concept. In (b) the transformation applied highlights the
single concept of symmetry

The classical principles of Gestalt perception - proximity, similarity, common fate,
good continuation, closure, symmetry, parallelism (Wagemans et al., 2012) - inspire the
design of features in our method. The method uses a set of simple heuristics used for
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building knowledge representation. The goal is to design functions that can serve as
cues for the underlying concept.

The Color concept can be encapsulated with a density function, that counts number
of pixels of varying intensity. During the representation phase, the pixels are trans-
formed into coordinate points, reducing the density function to a count of points.

The Orientation concept must be captured before the PCA transformation that ro-
tates the figures to the simplest structure is applied. By computing Pearson correlation
coefficient, we obtain the amount of linear relationships between points (Benesty et al.,
2009).

Topology concepts, such as inside/outside, closure, connectedness, and holes, re-
quire several features - contour count and child-parent relationship between contours.
For example, Figure 2 that highlights closure contains one figure that is inconsistent
with the other figures with regards to the number of contours. The odd figure shows a
disjointed curve whereas the consistent with the concept figures shows curves that join
continuous points.

Symmetrical Figures after applying PCA transformation, images are automatically
aligned along the axes of symmetry; thus, computing the discrepancies between the
alignment points in the upper and lower quadrants will give a clue about how symmet-
rical is the figure.

First, we collapse the points to a single vector by computing the average value per
x-coordinate. In symmetrical figures, the vector should contain values close to zero.

Ŷk =
1

nk

i=nk∑
i=0

yi[xk] (2)

where Ŷk is the average value of the points where x=k.
To obtain a scalar measure of the symmetry feature, we subsequently compute the

variance of the Ŷk vector - V ar(Ŷk) that captures the overall adherence to the concept.
Likewise, we compute an average vector X̂k and y-axis along with its scalar represen-
tation via variance - V ar(X̂k).

The similar features are relevant for the concept of Geometrical Figures. A trans-
formation maps specific geometrical figures into themselves along their axes of sym-
metry. For example, a square has four lines of symmetry, whereas a rectangle has only
two. An equilateral triangle has three lines of symmetry, whereas an isosceles triangle
has only a bilateral symmetry. Designing several functions that capture the heuristics
of symmetry (reflection, translation, rotation), in conjunction with other features, can
identify the image most inconsistent with the core concept in the problem.

Euclidean Geometry (e.g., line, points, parallelism, and right angle) requires a sub-
set of the features defined above. Figure 4 suggests that a feature that computes a vari-
ance along axes can quickly identify the odd-one-out image that violates the consistent
measure across the remaining figures.

Problems that assess the ability to detect Metric Properties, such as distance be-
tween objects, center and middle segments, are likewise dependent on the symmetry
features. In problems where the center of an item is intentionally offset, a feature that
creates a mapping between upper and lower quadrant pixels exhibits a gap, i.e., several
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(a) Original Figures (b) Transformed Figures

Fig. 4: Alignment of Points Concept. In (a) the concept is shown in its original raw form that in-
clude an orientation noise not relevant to the concept. In (b) the transformation applied highlights
the single concept of alignment

points from that upper quadrant that do not have a pair from the lower quadrant (see
Figure 5).

(a) Original Figures (b) Transformed Figures

Fig. 5: Center of Circle. In (a), the concept is shown in its original raw form that includes circles
of different sizes and positions. In (b), the transformation applied highlights the single concept of
the location of the center point

Chiral Figures require an ability to perform mental rotation to align the figures in
the same axes for comparison. We note that the ablation of a feature may remove infor-
mation critical to recognize the concept in some instances. For example, in Figure 6, the
concept of chirality is being erased by the transformation where pixels reorient around
principal components. This ambiguity results from chirality’s underlying property - an
object cannot be mapped into its mirror image only by rotation and translation. There-
fore, there is no symmetry operation (in 2D) that would preserve the object’s invariance.

Geometrical Transformations involve translation, homothecy, symmetrical reflec-
tion, and rotation. Arguably, this is the most difficult mathematical concept, especially
when given in static images (Dehaene et al., 2006). All previously described features
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(a) Original Figures (b) Transformed Figures

Fig. 6: Chirality on Oblique Axes. In (a), the concept is shown in its original raw form that
includes chiral figures in random axes. In (b), the PCA transformation removed the rotation in-
formation which made all the figures identical.

are applicable here as well, although the more confident answers are achieved using a
combination of several features.

3.5 Problem Solving Phase

Figure 7 illustrates the processing in our computational technique. The algorithm starts
with the segmentation and visual encoding, as described in the sections above. After
the raw features are extracted and transformed, a filtering method is applied to select
the most prominent attribute Si that might hold the cues for identifying the discrepant
image.

Si = {fk(Im∗
i ) | ∀f ∈ Features, z(fk) ≥ δ} (3)

where fk(Im∗
i ) is a k − th feature extracted from all six segmented and encoded

images for the original problem i;
and z(fk) = xk−x̃k

σk
- the standard score computed for the feature z(fk); in our

experiments δ = 2 in order to select features where an element is at least two standard
deviations from the mean.

The intuition behind applying a z-score to the raw features is that Dehaene’s test’s
core is to detect violations of some desired geometry concept. Therefore, we expect that
the most pertinent attribute will contain an anomaly that can be captured with metrics
specifically designed to detect outliers. Thus, if the set of figures contain a odd attribute,
the feature will draw attention to it with an anomalous z-score. If none of the extracted
features exceed the threshold, the extraction process is deemed insufficient, and the
problem is skipped.

To identify the discrepant image, X∗, each of the filtered features votes for one of
the six candidates. The solution is selected by choosing the candidate with the highest
number of votes.

X∗ = arg max
j

V ote(Xj) (4)
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Fig. 7: A diagram of the computational workflow for solving Dehaene’s geometrical problems.
The process starts with the original image segmented into six panels, subsequently encoded and
transformed for visual reasoning. Feature selection is performed based on the z-score exceeding
a threshold δ (in our case δ = 2). The discrepant image is the one that violates the observed
consistency (voting occurs if more than one feature is selected as a candidate for the underlying
concept).

Ideal are scenarios in which filtering yields a single feature, and no voting is re-
quired. The ambiguity only arises where more than one feature holds an attribute of the
underlying geometry concept. For example, the symmetry concept can be captured with
different high-level heuristic functions, such as one-to-one point mapping or distance
to the centerline. For ties, voting is repeated with a feature preference weight (more
specific features are preferred.)

Additionally, the algorithm applies reduced precision of the computations across
all phases - from representation to transformation and scoring. This approach converts
scores from exact numerical format to more rounded approximations, which helped
with noise when working with raw images (Zadeh, 1984).

4 Results

4.1 Accuracy

Table 1 summarizes the performance of the designed algorithm per metric as presented
in the Dehaene et al. experiment. The total accuracy measure is 89% with 40 out of
45 problems solved correctly. The last column in the table records the performance of
Mundurukú participants. Problems involving basic geometry concepts, such as topol-
ogy, geometrical figures, lines, and angles, have specific features and, therefore, more
straightforward (100% correct). Problems that involve transformations are more com-
plex as they involve mental translation, reflections, scaling, and rotations. The lower
performance on those problems is consistent with the findings reported by Dehaene et
al. Problems that exercise the concept of chirality (number of examples = 4) average
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to a 50% accuracy with a significant difference between figures shown in vertical vs.
random (oblique) axes ( 85% and 23% correspondingly).

Concept true total ratio human
Color/Orientation 2.0 2.0 1.0 95.0
Chiral Figures Aligned 2.0 2.0 1.0 88.0
Euclidean Geometry 8.0 8.0 1.0 84.0
Geometrical Figures 9.0 9.0 1.0 79.0
Topology 4.0 4.0 1.0 76.0
Symmetrical Figures 3.0 3.0 1.0 67.0
Metric Properties 6.0 7.0 0.86 62.0
Geometrical Transformations 6.0 8.0 0.75 34.0
Chiral Figures Random 0.0 2.0 0.0 23.0

Table 1: Algorithm performance per concept. The index of the table is the name of the concept
as presented by Dehaene et. al.; first column is the count of correctly identified images by the
structural affinity algorithm; second column is the total count of problem in the given concept;
third column is the ratio of correctly solved problems; And the last column is the performance of
the Mundurukú participants

4.2 Comparison to Other Computational Techniques

This paper demonstrates that by leveraging Gestalt principles of perception in the de-
sign of algorithms for problem-solving, our computational technique can approximate
the human-level behavior on Dehaene’s core geometry tasks. Unlike techniques that
rely on objects and borders detection for qualitative representations (such as (Lovett
et al., 2008), (Lovett and Forbus, 2011)), we describe a computational technique that
1) transforms input images into more perceptually coherent variations, 2) scores the re-
sulting representations against pre-defined properties (such as symmetry, rotation, and
other geometrical concepts), and 3) identifies an instance where scores are in disagree-
ment with the rest of images. Lovett et al. (Lovett et al., 2008), and Lovett and Forbus
(Lovett and Forbus, 2011) integrate four different systems for addressing visual oddity
tasks and solve 39 out of 45 problems correctly. Our approach’s advantage is that it
solves a similar number of the problems correctly (40 out of 45). It does so while satis-
fying the parsimony characteristic, i.e., striving for the most straightforward theory that
can explain the intent in the discussed geometry problem. Parsimony, in this context,
is concerned with problem-solving behavior that characterizes many gifted individuals
(Koichu, 2008).

In the computational technique that employs fractal representations (McGreggor
and Goel, 2013), visual oddity tasks are addressed with a notion of visual similarity that
operates on varying levels of image representation - from coarse to refined. In addition
to providing solutions, the authors compute confidence measures (30 unambiguously
correct and 15 correct but ambiguous) and compare them with human performance.
An analysis of ambiguity allows tuning the levels of coarseness to determine the best
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strategy for representation. McGreggor et al. claim that their algorithm is parsimonious
because it does not use additional mechanisms for problem-solving phases (McGreggor
and Goel, 2013). However, simplicity is not always a sufficient measure of parsimony;
nor does simplicity always offer a robust explanation of intelligent behavior. Our ap-
proach is based on scoring images by their explainability with concepts such as sym-
metry, topology, and Euclidean geometry properties. An image is considered odd if its
characteristics do not match the rest of the images’ elements. An analysis of agreements
and violations helps highlight the most pertinent attributes of the problem, thus giving
an explainable answer.

An algorithm of visual perception that is intuitively based on Gestalt principles can
infer higher-level abstractions from raw pixels and their relationships. This observation,
in turn, increases the diverse set of capabilities to perceive regularities in images through
the lens of symmetry, closure, similarity, and other geometrical concepts.

5 Discussion

One of the main questions raised by Dehaene et al. is whether core geometric intelli-
gence is inherent in the human mind (Dehaene et al., 2006). This question is complex;
the answer depends on how the geometrical concepts are represented and what type
of mental operations are invoked when assessing a concept. Therefore, the research
presented here is motivated by two goals: 1) to understand what transformations are
ubiquitous for exploring geometrical notions, i.e., what kind of abstract reasoning is
most relevant for dissecting a geometry problem, and 2) is there an underlying organiz-
ing principle that governs our perception of shapes, and their ability to be transformed
into similar, but more perceptually coherent objects.

To answer (1), we developed a computational technique that transforms encoded
images that hold geometry concepts using a mathematical mechanism to discover struc-
ture and relations among the variables. We found the applying PCA may be interpreted
as performing mental transformations, such as rotations of the coordinate axes, to align
the studied shapes. In Dehaene’s problems, finding the principal components is a viable
explanation of how the mind removes irrelevant differences between shapes to identify
the central geometry concept. Forgetting the details is an idea pervasive in humans and
is generally attributed to innate biology Biederman (1987). The resulting structural uni-
formity brings into focus those aspects that are most relevant to the task at hand, and
allows identifying discrepancies that in Dehaene’s problem represent the solutions.

To address (2), we observe that most of Dehaene’s problems exhibit symmetry as a
latent (unless directly specified) principle. Gestalt theory suggests that visual percep-
tion is frequently driven by the tendency to maximize the shapes’ appeal and connection
with other surrounding shapes (Spelke, 1990). Therefore, our computational technique
benefits from viewing the geometry problems through the lens of symmetry. For exam-
ple, Figure 5 is probing the concept of metric properties, specifically a center of a circle.
One way of reasoning about that in concordance with a metric concept is to consider the
distance of the inside point from all of the circumference points. Alternatively, it may be
reasoned with the concept of symmetry - the misalignment of the inner point from the
center in one of the figures breaks the symmetry group of the circle object, i.e., it is not
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possible to map the figure on itself using rotations or reflections. Similar reasoning is
applied to Dehaene’s other problems, suggesting that symmetry may be the underlying
organizing principle for basic geometry concepts. This idea is captured in the genera-
tive process, described by Leyton (2003), as a way to recover the necessary operations
that can reconstruct any geometrical shape. By applying appropriate symmetry groups,
a collection of related images (such as Dehaene’s set) can be described in the context
of one another, thus revealing the underlying structure of the whole concept.

The complexity of analyzing the perception of images arises from the presence of
many possible patterns that are compatible with the observed features. Previous re-
search has proposed parsimony (Epstein (1984)) and simplicity (Chater and Vitányi
(2003)) as fundamental principles of cognition: they argue that mind prefers the sim-
plest or most parsimonious explanations - an idea rooted in the Ockham’s razor princi-
ple. The central theme of our research is an emphasis that perceiving geometrical im-
ages through the lens of symmetry lead to more unified and simpler explanations. This
approach provides a justification for choosing some patterns over others and appears to
be consistent with the Gestalt principles of perception.

6 Future Directions

The brain’s self-organizing processes described by Gestalt principles enable sponta-
neous switching between the functions of the figure and ground (Wagemans et al.,
2012). Thus, it is reasonably easy for humans to identify the motifs in Escher’s draw-
ings without requiring substantial previous exposure and training in geometry concepts.
In the next stage of our research, we will probe an AI agent’s ability to infer the fig-
ure/ground images’ organizational functions.

The main focus of this work was to encode the general properties of grouping princi-
ples during perceptions of geometrical primitives in Dehaene’s images. In future work,
we intend to expand the arsenal of geometrical concepts that can be organized with
various types of symmetrical operations and groups. In addition to identifying strictly
repeating motifs (gliding symmetry), we will explore strategies for extracting motifs for
M.C. Escher’s tessellation works by analyzing each of the seventeen symmetry groups
Schattschneider (2010). We also hope to deepen the interpretative capabilities of AI so-
lutions by building the bridge between Gestalt principles of perception and algorithmic
object manipulations for visual reasoning.

Acknowledgement

The authors thank the members of the Georgia Tech Design & Intelligence Laboratory,
especially Keith McGreggor, Tesca Fitzgerald and Priyam Parashar, for many discus-
sions and helpful suggestions.

References
Amalric, M., Wang, L., Pica, P., Figueira, S., Sigman, M., Dehaene, S. (2017). The language

of geometry: Fast comprehension of geometrical primitives and rules in human adults and
preschoolers, PLoS computational biology 13(1), e1005273.



The Role of Symmetry in Geometric Intelligence 273

Benesty, J., Chen, J., Huang, Y., Cohen, I. (2009). Pearson correlation coefficient, Noise reduction
in speech processing, Springer, pp. 1–4.

Biederman, I. (1987). Recognition-by-components: a theory of human image understanding.,
Psychological review 94(2), 115.

Bornstein, M. H., Ferdinandsen, K., Gross, C. G. (1981). Perception of symmetry in infancy.,
Developmental psychology 17(1), 82.

Carpenter, P. A., Just, M. A., Shell, P. (1990). What one intelligence test measures: a theoret-
ical account of the processing in the raven progressive matrices test., Psychological review
97(3), 404.
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Fig. 8: Dehaene’s problem set grouped by concept and presented in order of complexity from
simplest (color, orientation) to the most intricate geometric transformations (homothecy, sym-
metry and rotation). The image is retrieved from the Dehaene’s reseach paper published in Re-
search Gate Dehaene et al. (2006). The percentages next the concept measure the performance of
Mundurukú participants in each category and individual problem.
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