Baltic J. Modern Computing, Vol. 9 (2021), No. 3, pp. 333-344
https://doi.org/10.22364/bjmc.2021.9.3.07

Investigation of YOLOVS Efficiency in iPhone
Supported Systems

Daniel DLUZNEVSKIJ?, Pavel STEFANOVIC?, Simona RAMANAUSKAITE?

! Department of Electronic Systems, Vilnius Gediminas Technical University, Naugarduko g.
41, LT-03227 Vilnius, Lithuania
2 Department of Information Systems, Vilnius Gediminas Technical University, Saulétekio al.
11, LT-10223 Vilnius, Lithuania
3 Department of Information Technology, Vilnius Gediminas Technical University, Saulétekio
al. 11, LT-10223 Vilnius, Lithuania

daniel.dluznevskij@stud.vilniustech.1lt, pavel.stefanovic@vilniustech.lt
simona.ramanauskaite@vilniustech.1lt

Abstract. Object detection gaining popularity and is more used on mobile devices for real-time
video automated analysis. In this paper, the efficiency of the newly released YOLOVS object
detection model has been investigated. Experimental research has been performed to find out
the efficiency of YOLOVS5 using a mobile device with real-time object detection tasks. For this
reason, four YOLOVS model sizes have been used: small, medium, large, and extra-large. The ex-
periments have been performed with a well-known COCO dataset. The original dataset consists
of a huge number of images, so the dataset has been reduced to fit the mobile device require-
ments. The experimental investigation results have shown, that reducing the COCO dataset has
no significant influence on the model accuracy, but the model performance is highly influenced
by the hardware architecture and system where the model is used. Apple Network Engine usage
might significantly increase the YOLOVS model performance in comparison to CPU usage.

Keywords: object detection, COCO dataset, real-time detection, iPhone systems, mobile device,
YOLOVS.

1 Introduction

These days, there are more mobile devices in the world than a decade ago. Mobile de-
vices are used in various day-to-day activities. The machine learning and deep learning
model solutions are realized in the newest devices, which helps us to secure devices,
and also, in many different personalized options where the device adapts to our be-
havior or habits. Over the last decade, scientists achieved exceptional results in the
computer vision field using convolutional neural networks (Rghioui et al., 2017). In the

334 DluZnevskij et al.

last couple of years, many interesting ideas came to our life, such as residual neural net-
works (Chang et al., 2018), End-to-End Object Detection using Transformers, MuZero
(Schrittwieser et al., 2020), AlphaFold, GPT-3 (Floridi et al., 2020), and many more.
Mobile devices rapidly progress and naturally will replace conventional computers, re-
sulting it will be necessary of building small, and at the same time efficient models.
Nowadays, the main computer vision task is image classification, object segmentation
or detection, and object localization. In this paper, object detection has been analyzed.
Object detection is a model that locates objects, draws bounding boxes around them,
and assigning the classes to the detected objects in the image. For example, the neural
network takes an image and returns one or many drawn bounding boxes around de-
tected objects. There is a lot of various type of object detection algorithms (Zhao et
al., 2019) which is used in different tasks. For example, traffic light detection, which
is used by self-driving cars (Kulkarni et al., 2018); a person recognition used by police
(Wilkowski et al., 2019), etc. In our experimental investigation, the newest YOLOvS
model has been used.

While artificial intelligence solutions gain their popularity, their usage is closely
related to hardware capabilities to apply the model within the given time. Mobile de-
vices have limited resources, therefore real-time usage of complex, cloud computing
dedicated solutions might cause undesired delay. This issue might be very important in
mobile apps, where object detection is executed from a live video stream and requires
minimization of response time. Therefore it is important to prepare a mobile device-
oriented object detection model and investigate its performance in a certain type of
mobile device. Therefore the paper aims to investigate YOLOVS based object detection
model performance in iPhone mobile devices. The structure of the paper is as follows:
In Section 2, the related works are reviewed. In Section 3 the dataset and its preparation
are presented, as well as the experimental investigation and obtained results. Section 4
concludes the paper.

2 Related works

2.1 Evolution of object detection algorithms

A region-based convolutional neural network family consists of R-CNN, Fast R-CNN,
Faster R-CNN, and Mask R-CNN. The first time the R-CNN (Girshick et al., 2014)
was presented was in 2014. The main issue of the R-CNN algorithm is the slow per-
formance, so to improve the algorithm and make it faster, in the same year the Fast
R-CNN has been introduced by Girshick (Girshick, 2015). This proposal improved the
model’s training procedure by consolidating three independent models into a single
framework, which speeds up the algorithm. However, speed is not the only factor of
a modern solution, so the Fast R-CNN architecture was further improved to reach a
higher computational speed of model training process and object detection accuracy.
Ren et al., improved it by integrating the region proposal algorithm into the CNN model
and named it Faster R-CNN. The Mask R-CNN extends Faster R-CNN to pixel-level
image segmentation. The goal was to separate the classification and pixel-level mask
prediction tasks (He et al., 2017).

Investigation of YOLOVS Efficiency in iPhone Supported Systems 335

BackBone PANet Output
[itrossieep | e |
[BottleNeckcsp | { Concat ! BottleNeckCSP | { convixi |

|

I -
$ Conv3x3S2 |
i !

i BottleNeckCSP

v ! ETer—
[BottieNeckcsP ; { concat | BottleNeckCSP { convix1 |
I -
! Conv3x3s2 |
i L
| ey

* kCS BottleNeckCSP + { convixi |

|

Fig. 1. Overview of YOLOVS architecture (WEB (a), 2021

Another family of object detection models is called You Only Look Once (YOLO).
The YOLO models are faster than the R-CNN family models, so usually are used in var-
ious real-time tasks, for example, object detection in video records. The YOLO model
was first time presented by Redmon et al. in 2015. R-CNN’s key difference is that
YOLO was the first to build a fast real-time object detector and involve a single neural
network trained end-to-end. It takes an image as an input and predicts bounding boxes
and class labels for each bounding box. This model offers lower prediction accuracy
but can operate at 45 frames per second. In 2017 Redmon and Farhadi introduced an
improved version and named it YOLOv2 (sometimes called YOLO9000) capable of
predicting 9000 object classes (Redmon et al., 2017). Later the same authors Redmon
and Farhadi proposed further improvements in 2018 (Redmon et al., 2018). The authors
proposed minor improvements, including a deeper feature detector network and minor
changes to the representational layer, but it slightly improved the performance of the
YOLOV?2 algorithm. The latest method YOLOv4 introduced by Bochkovskiy et al. last
year (Bochkovskiy et al., 2020). The experimental investigation has been performed to
analyze the various combination of usage backbones (CSPResNext50, CSPDarknet53,
EfficientNet-B3, etc.), and object detection models (YOLOv4, YOLOVvV3, SSD, RFBnet,
etc.). The research showed, that YOLOv4 gives better speed performance and accuracy
compared to the other combinations.

Nowadays the newest version of YOLO is the fifth version developed by the com-
pany Ultralytics. The difference of the new YOLOVS compared to other same type
models is that YOLOVS uses a CrossStage Partial Network (CSPNet) (Liu et al., 2018)
as the model backbone and Path Aggregation Network (PANet) (Wang et al., 2020) as
the neck for feature aggregation. The model architecture is presented in Fig. 1. These
new improvements give better feature extraction and a significant boost in the mAP
score. Because of the reason that YOLOVS is a new model, there is no much research
made, where this model efficiency has been evaluated.

In 2017, Howard et al., developed a class of efficient models called MobileNet,
which mainly focuses on mobile and embedded vision applications. Their main focus
was to increase the model’s efficiency of the network by decreasing the number of

336 DluZnevskij et al.

parameters by not compromising on performance. Recently, a researchers team from
Facebook Al proposed a new object detection method — object detection using the
Transformers. Transformers are a deep learning architecture that has gained popularity
in recent years. Transformers based on a mechanism called attention, enabling artificial
intelligence models to focus on certain parts of their input selectively and thus reason
more effectively. Transformers are widely applied to sequential data problems: natu-
ral language processing tasks such as language modeling and machine translation. The
Transformers were introduced by Vaswani et al. to perform the machine translation. The
Transformer’s core building block is an attention mechanism that enables it to have a
long-term memory. The model’s architecture is encoding and decoding blocks. An en-
coding block takes an input and yields output probabilities correspondingly. In DETR,
the encoder takes image features, and the decoder outputs class and linked bounding
box to that class. In the paper, Carion et al., authors use backbone CNN, the ResNet
CNN, and smaller feature versions of the image. Before combining image features
and positional encoding, the image features must be represented in a specific format
(converted from a matrix representation into a single sequence). The transformers are
naturally a sequence processing unit that takes a sequence of vectors. The transformer
encoder then transforms this sequence into an equally long sequence of features. The
transformed sequence has attention layers and can attend from each position to each
position in a one-shot manner. As the Transformer transforms the representation layer
up the transformer layers at each step, it can aggregate information from everywhere
in the sequence to anywhere else. Therefore, this approach is compelling if a sequence
requires a global connection across the sequence. The bounding boxes can be quite
large, hence requiring long-range dependencies. If one part of the bounding box needs
to communicate with other parts of the image, utilizing long-range dependencies of the
transformer architecture becomes a convenient way of dealing with this problem. The
transformer encoders output goes as a side input into the transformer decoder (condi-
tioning information). The decoder does the same actions: it takes a sequence and outputs
a sequence in one shot. The input sequence consists of object queries, for example, four
random pre-trained vectors. The output sequence yields a sequence previously used in
the transformer decoder, and additionally the conditioning information. The decoder’s
output goes through a classifier that outputs the class label and bounding box. Each of
the input queries ends up being one of the bounding boxes either defining an object or
stating that there is no object.

2.2 Object detection solutions evaluation metrics

Artificial intelligence and specifically object detection solutions might be evaluated
based on different metrics. While model training and interference time is the main per-
formance metric, the accuracy in object detection solutions and general classification
solutions are different. Object detection must take into account not only whether the
object is suitably classified, but does it found the correct bounds of the object. There-
fore the main accuracy metric in object detection is the mean average precision (mAP)
of the area under the precision-recall curve above.

In the object detection task, each detected area has a score associated (object likeli-
hood in the area). Based on the predictions a precision-recall curve (PR curve) is com-

Investigation of YOLOVS Efficiency in iPhone Supported Systems 337

puted for each class by varying the score threshold. The average precision (AP) is the
area under the PR curve. First, the AP is computed for each class. As there are multiple
classes average for all the classes is calculated to obtain the mAP.

To get the mAP value, the intersection over union (IoU) is used too. IoU measures
the overlap between two areas, how much the predicted boundary overlaps with the
dataset labeled area. For object detection accuracy measurement IoU threshold (for ex-
ample 0.5) might be defined to analyze mAP, whether the match between predicted and
labeled areas is greater than the defined threshold. This is used to evaluate true posi-
tives. Therefore while using mAP some IoU values are assigned as well (for example
mAP, 5 refers to the mAP where IoU is equal to 0.5 or above). In the experimental
investigation described in Section 3 the time has been evaluated too. It indicates how
fast object detection has been performed in various experimental cases.

2.3 The review of object detection methods efficiency

As was mention before, the object detection methods are often analyzed in different
applications, such as measuring the efficiency, usability, methods suitability for specific
tasks, etc. In the object detection tasks, the CNN methods perform a lot of computation
and highly is using computer storage, so GPU started to be used for real-time object
detection. By solving one problem, then other challenges arise such as the high power
consumption of GPU, it is difficult to adopt GPU in mobile applications for example
automatic driving. Solutions to solve such kind of problems was made by Yu et al.
The authors’ proposed techniques to lower the power consumption of object detection
on mobile GPU or FPGA achieved the best result with mAP/Energy on mobile GPU
platforms. The deep learning methods became one of the most widely used in vari-
ous fields such as natural language processing, image classification, machine learning,
and object detection over the past decade. The analysis of object detection algorithms
Region-based Convolutional Neural Networks (RCNN), Faster-RCNN, Single Shot De-
tector, and You Only Look Once has been performed by Chandan et al. The analysis
showed that Faster-RCNN and SSD have better accuracy results, while the YOLO algo-
rithm performs better when speed is given preference over accuracy. Also, the various
combination of methods was analyzed by measuring their performance.

In the paper Wang et al., the object detection methods were analyzed that can be
used in real-time object detection by mobile devices. The authors propose an efficient
architecture named PeleeNet, which base is conventional convolution. The experimental
investigation was performed using the ILSVRC 2012, VOC 2007, and COCO datasets,
where the PeleeNet achieves higher accuracy and over 1.8 times faster speed than Mo-
bileNet and MobileNetV2. Moreover, the proposed architecture is only 66% of the
model size of the original MobileNet. The comparative analysis has been performed
using various models such as SSD, YOLOv2, YOLOv3, MobileNetv2, but in all cases,
by authors proposed PeleeNet architecture obtained the higher accuracy compared to
the other models. The other researches performed by Tan et al., focuses on the study
of neural network architecture choices and proposes several key optimizations to im-
prove the efficiency of object detection. The authors proposed to combinate a weighted
bi-directional feature pyramid network, which allows easy and fast multiscale feature
fusion, and a compound scaling method that uniformly scales the resolution, depth, and

338 DluZnevskij et al.

width for all backbone, feature network, and box/class prediction networks at the same
time. This architecture is named the EfficientDet, which consistently achieves better
accuracy and efficiency than the prior art.

One more network architecture of object detection named PVANET has been pro-
posed by Hong et al. The network architecture allows lightweight feature extraction,
which achieves real-time object detection performance without losing accuracy com-
pared to the other state-of-the-art systems. The base of proposed architecture construc-
tion is the usage of fewer channels and more layers. The obtained results showed that the
object detection model trained on the VOC2007 dataset achieves 83.8% mean average
precision, and using VOC2012 — 82.5% mAP. The network requires only 12.3% of the
computational resource compared to ResNet-101. Also, the authors proved that a sim-
ple technique like truncated SVD could achieve a notable improvement in the runtime
performance based on the proposed network. YOLO algorithm and its modifications are
constantly developed to improve performance and efficiency. In the paper, Lu et al., was
proposed the real-time object detection algorithm for videos based on the YOLO archi-
tecture, the so-called Fast YOLO. In the image preprocessing stage authors eliminate
the image background which highly influences the final object detection results. As the
base, the authors use Google Inception Net architecture to improve the YOLO network
by using a small convolution operation to replace the original convolution operation. It
helps to reduce the number of parameters and greatly shorten the time for object detec-
tion. Most of the related research uses already tested models, so in our work, we pay
more attention to the new YOLOVS architecture to find out its effectiveness in solving
real-time object recognition problems.

3 Experimental investigation

3.1 Dataset

While the size of the training dataset does not necessarily influence the model size and
complexity, usage of a smaller training dataset allows reduction of model training time.
At the same time, the reduction of the training dataset might reduce the object detec-
tion accuracy, therefore a balance between model performance and accuracy should
be defined for each situation. In this research, we are concentrating on the analysis of
YOLOVS5 model application performance on different iPhone architectures, therefore
accuracy is not the main goal. A smaller training dataset was selected to be used in
comparison to other accuracy-oriented solutions.

In this paper, the Microsoft Common Object in Context (COCO) dataset has been
used to perform an experimental investigation. This dataset is collected by Lin et al. and
it contains 330 000 images, where more than 200 000 images are labeled by human an-
notators. The dataset is available in four different types: training, validation, testing, un-
labelled images, and annotated images. To prevent some bias or dataset unbalance, the
reduction of the original COCO dataset was executed by selecting the COCO mini-train
dataset and by using the cocosplit tool (Karazniewicz, 2021) spitting it into the 60/40
ratio, where 60% of the original dataset are train annotations (15 000 annotations), and
40% of the original train dataset are validation annotations (10 000 annotations). This

Investigation of YOLOVS Efficiency in iPhone Supported Systems 339

Step 1
Train Train
annotations annotations
(15Kk) (8k)
coco Q
minitrain
annotations
COCO split Validation €OCO split Validation
60/40 annotations 80, lzop annotations
(10k) (2k)
Step 2
Folder with
train images
Images - Folder with
and Ol_'ganlzlng validation
annotations images images
Step 3
Train
annotations
Converted .txt
with YOLO
annotations
Validation COCO JSON
annotations processing

Fig. 2. The main steps of dataset preparation.

step allows gathering of the COCO dataset subset, where 10 000 annotations are pre-
sented as only validation annotations will be used for our experiment. After the selection
of 10 000 annotations for further experiments, the subset of the COCO dataset was split
into training and validation data by using the same cocosplit tool. 80% of the data was
selected as training and 20% — as validation. The idea of COCO dataset reduction for
our experiment is presented in Fig. 2 (the first two steps).

Each image in the COCO dataset has a unique identifier (ID) that corresponds to
the file itself. Annotations store multiple values that are relevant to the specific image.
The information applicable to object detection is category ID with 80 annotated object
categories (classes), reference image ID, and bounding box coordinates (x, y, width,
and height). The COCO dataset uses annotations stored in a single JSON file as key-
value attributes. Meanwhile, the YOLO models use a different format — each image has
a corresponding .txt file with the following fields one row per object, object class, and
bounding box coordinates (x center, y center, width, height). Therefore a transformation
from one file format to another is done by storing the gathered COCO dataset subject
training and validation data into different catalogs and using the JSON2YOLO tool
(Jocher, 2021) to get YOLO needed file format. The summary of dataset preparation
is presented in Fig. 2, where the Step 1 includes COCO dataset reduction, the Step 2

340 DluZnevskij et al.

> X

Small Medium Large XLarge
YOLOvSs YOLOvSmM YOLOvSI YOLOv5x
14 MB_, 41 MB_,,, 90 MB_,, 168 MB__
22ms, o 29ms o 3.8ms 6.0ms, o
36.8 MAP_ . 44.5 mAP o 48.1 mAP_ 50.1 mAP_

Fig. 3. YOLOVS different model sizes, where FP16 stands for the half floating-point precision,
V100 is an inference time in milliseconds on the Nvidia V100 GPU, and mAP based on the
original COCO dataset (WEB (b), 2021).

prepares the dataset data to transformation suitable form, and the Step 3 converts the
reduced COCO dataset to YOLO suitable format.

3.2 Model performance evaluation

The YOLOVS5 provides different models with different configurations and parameter
sizes (see Fig. 3). Respectively the YOLOvSs, YOLOvSm, YOLOvSI], and YOLOvS5x
mean small (s), medium (m), large (1), and extra-large (x) models. Each model has its
pros and cons, but eventually, the differences are in their complexities, performances,
and overall accuracy. The (WEB (b), 2021) results show the size of the models varies
from 14MB to 168MB, mAP values for the full COCO dataset is from 36.8 to 50.1
and the inference time on the Nvidia V100 GPU varies from 2.2 to 6.0 milliseconds.
These results are suitable for real-time usage, however, achieved especially for artificial
intelligence solutions dedicated architecture.

As we use a reduced COCO dataset, some additional experiments have to be per-
formed to get the baseline model accuracy and performance values. As well, to re-
flect the mobile device specifics, the data input size for YOLOvS models was set to
416 x 416 pixels. During the training of four models (s, m, 1, x), each model trained
on 200 epochs, default parameters for each model where left, 80/20 split on the previ-
ously defined dataset was used, and an output image size of 416 x 416 pixels was set.
For each tested model performance was evaluated based on different metrics: mAP, and
mAP with specified intersection over union (IoU), losses for both training and valida-
tion runs, speed, parameters amount, and GFLOPS. As most of the existing experiments
on object detection concentrate on mAP values with 0.5:0.95 and 0.5 were used as the
main accuracy metrics.

The models were trained and tested on the paid version of Google Colab, which
provides the Tesla V100’s GPU, a professional GPU with 16GB of fast HBM2 of video
memory. Because of the cloud-based Google Colab specific, the inference time values
varied during different periods, therefore an average value of several experiments is
presented for each model (see Table 1).

Investigation of YOLOVS Efficiency in iPhone Supported Systems 341

Table 1. Results of YOLOvS models, used on paid Google Colab environment.

Model |Dataset (psi)l(zeis) 0?‘31; 5 H(I)A;P :il:lflzr?;css Parameters| GFLOPS
YOLOV5s Reduced 23.6 [38.3 27 7.3 17
YOLOv5m COCO 1416 x 416 28.7 |43.7 32 21.4 51.3
YOLOVS5I Jatset 31.5 [46.8 41 47 115.4
YOLOv5x) 32.8 |48.5 49 87.7 218.8

Our measured YOLOVS accuracy and performance results demonstrate the same
tendencies, as experiments by other authors (WEB (b), 2021): the accuracy, model infer-
ence time, and complexity of the model increase from the lowest values in the YOLOVSs
model, to YOLOv5m, YOLOVSI, and the highest values in YOLOvS5x model. Other fac-
tors, such as the size and number of dataset images, environment capabilities, influenced
the accuracy. Therefore the performance of the models is not as good as achieved by
other authors (Zhao et al., 2019). In comparison to YOLOVS authors announced ac-
curacy, the model accuracy decrease is not statistically significant (p = 0.898), while
the performance, interference time changed statistically significant (p = 0.005) and
increased several times. Even tho, the performance in the Google Colab platform is
on the edge for real-time video processing — more than 20 images (in worse case, when
YOLOvV5x model is used) can be processed within one second, therefore if some frames
of the video stream will be skipped, the object detection could be implemented in real-
time.

3.3 Results of model application in different iPhone architectures

YOLOVS5 models provide enough performance for usage in Google Colab, however, it is
unknown how the created models will perform on mobile devices. The model accuracy
is not influenced by the execution platform, however the model performance, inference
time might be different because of different resources and its architecture. For experi-
ments on whether YOLOVS models are suitable for real-time usage in mobile devices,
we used iPhone 12 model while utilizing the different system on a chip (SoC) compo-
nents: an Apple Neural Engine (ANE), graphical processing unit (GPU), and central
processing unit (CPU). The iPhone for this experiment was selected because of the va-
riety of supported SoC — it has a specific neutral engine, which is hardware, dedicated
for neural network applications, with the performance of up to 600 billion operations
per second.

The created object detection models were applied for usage in iPhone 12 environ-
ment — all models were converted to the Core ML and quantized to int 8. The exper-
imental investigation source code for the mobile object detector, an iOS application
for real-time object detection available in (Dluznevskij, 2021). These four models were
tested with the same testing samples as in the Google Colab environment (see Table 2).

Comparing all models revealed the same tendencies as in the previous experiment
— the YOLOVvVS5s model is the smallest, therefore has the smallest inference time, while
increasing the complexity of the model its inference speed is reduced. ANE architecture
is the most suitable to run YOLOVS models in iPhone 12, as shows the fastest inference

342 Dluznevskij et al.

Table 2. Results of YOLOVS models, used on iPhone 12 environment.

Model Average time,| Average time,| Average time,
ANE (ms) GPU (ms) CPU (ms)
YOLOVS5s Int8 77 82 80
YOLOvV5m Int8 106 114 148
YOLOVSI Int8 145 181 263
YOLOVS5x Int8 341 321 441

Architecture influence on YOLOvV5 models real-time usage

40 37
o 35 31
u': 25 20
8 20
2 15 12 1212 5
en
10 8¢ 6 s
= s __ 3 2 3 2

0

YOLOVSs YOLOVSm YOLOVSL YOLOvSx
MODEL

@EColab V100 iPhone 12 ANE iPhone 12 GPU iPhone 12 CPU

Fig. 4. Image processing frequency in different architectures of YOLOvS models.

speed for most of the models. The difference between ANE and GPU architecture is not
statistically significant (p = 0.923). Another interesting metric to analyze is how many
images could be processed per second by using each of the technologies (see Fig. 4).

The figure above illustrates none of the YOLOvS models would be able to process
all 24 image frames in real-time by using iPhone 12. Even in the Google Colab plat-
form, it is risky to use large or extra-large YOLOvS5 models. Meanwhile, if some frames
might be skipped, the iPhone 12 architecture is capable to apply the YOLOvS model
and process up to 12 images per second with the YOLOvSs model and up to 2 images
per second with the YOLOv5x model. It is worth to mention the results are achieved by
applying the models, defined in the previous subsection and using default parameters
and image size of 416 x 416 pixels. It does not take into account the ANE specifics. As
Leon De Andrade states (Andrade, 2021) the "kernel sizes above 7 are not supported by
the Neural Engine and will force the device to switch back to the CPU/GPU”. There-
fore by adjusting the model configuration, a higher performance can be achieved. For
example, by using the optimized for ANE YOLOvS5s model, which uses 192 x 320 pixel
image size, the inference time in ANE architecture is 10 ms, in GPU — 47 ms, in CPU
— 27 ms. Such a performance allows the processing of up to 100 images per second.
These results are more than enough for real-time usage in iPhone 12 devices.

Investigation of YOLOVS Efficiency in iPhone Supported Systems 343

4 Conclusions

Object detection in images is well developed for scientific research as provides needed
datasets and tools for transformation from one dataset to another. The existing dataset
and tools not only simplifies the object detection task but at the same time provide a
clear benchmark for different research conditions and result comparison. The reduction
of image size to 416 x 416 pixels does not reduce YOLOvVS5 model accuracy statistically
significantly, even by reducing the dataset size to 8 000 records for training and 2000
records for validation. This proves YOLOVS is suitable for mobile device-oriented im-
ages to detect objects. YOLOvVS model performance is highly influenced by the used
hardware architecture and system on a chip. The performance of models in Google
Colab with V100 architecture and iPhone 12 devices is not comparable because of dif-
ferent purpose architectures. Meanwhile, Apple Network Engine usage might increase
the developed YOLOVS models’ performance in comparison to CPU usage.

Standard configuration YOLOVS models with 416 x 416 pixels image size are not
able to perform real-time object detection in iPhone 12 device as can process just up to
12 images per second. Meanwhile, by taking into account the Apple Network Engine
specifics and optimizing the model, the object detection in iPhone 12 devices might
reach up to 100 images per second, which is more than enough for real-time image
detection in a video stream.

References

Andrade, L. D. https://github.com/ultralytics/yolov5/issues/2526.

Bochkovskiy, A., Wang, C. Y., Liao, H. Y. M. (2020). Yolov4: Optimal speed and accuracy of
object detection. arXiv preprint arXiv:2004.10934.

Carion, N., Massa, F., Synnaeve, G., Usunier, N., Kirillov, A., Zagoruyko, S. (2020). End-to-end
object detection with transformers. InProc. Eur. Conf. Comp. Vis.

Chandan, G, Jain, A, Jain, H, et al. (2018). Real time object detection and tracking using deep
learning and OpenCV. In 2018 international conference on inventive research in computing
applications (ICIRCA), Coimbatore, India, 11-12, IEEE, pp. 1305-1308.

Chang, B., Meng, L., Haber, E., Ruthotto, L., Begert, D., Holtham, E. (2018). Reversible archi-
tectures for arbitrarily deep residual neural networks. In:Thirty-Second AAAI Conference on
Artificial Intelligence, Vol. 32, AAAI Press, Palo Alto, pp. 2811-2818.

DluZznevskij, D. Source code of experimental investigation.
https://github.com/danikkm/MobileObjectDetector.

Floridi, L., Chiriatti, M. (2020). GPT-3: Its Nature, Scope, Limits, and Consequences. Minds
Mach 30, pp. 681-694.

Girshick, R.; Donahue, J.; Darrell, T.; Malik, J. (2014). Rich feature hierarchies for accurate ob-
ject detection and semantic segmentation. In: Proceedings of the IEEE conference on com-
puter vision and pattern recognition, pp. 580-587.

Girshick, R. (2015). Fast R-CNN. In: Proceedings of the IEEE international conference on com-
puter vision, pp. 1440-1448.

He, K., Gkioxari, G., Dolldr, P., Girshick, R. (2017). Mask R-CNN. In: 2017 IEEE international
conference on computer vision (ICCV), pp. 2980-8.

Hong, S., Roh, B., Kim, K. H. (2016). PVANet: Lightweight deep neuralnetworks for real-time
object detection. In Proc. IEEE Conf. Comput.Vis. Pattern Recognit (CVPR), Las Vegas, NV,
USA, Jun, pp. 412-425.

344 DluZnevskij et al.

Howard, A. G., Zhu, M., Chen, B., Kalenichenko, D., Wang, W., Weyand, T., Andreetto, M.,
Adam, H. (2017). MobileNets: Efficient Convolutional Neural Networks for Mobile Vision
Applications.

Jocher, G. ultralytics/JSON2YOLO. https://github.com/ultralytics/JSON2YOLO.

Karazniewicz, A. akarazniewicz/cocosplit. https://github.com/akarazniewicz/cocosplit.

Kulkarni, R., Dhavalikar, S., Bangar, S. (2018). Traffic Light Detection and Recognition for Self
Driving Cars Using Deep Learning. in Proc. of 2018 Fourth International Conference on
Computing Communication Control and Automation (ICCUBEA).

Lin, T. Y., Maire, M., Belongie, S., Hays, J., Perona, P., Ramanan, D., Doll, P., Zitnick, C. L.
(2014). Microsoft COCO:common objects in context, CoRR, Vol. abs/1405.0312.

Liu, S., Qi, L., Qin, H., Shi, J., Jia, J. (2018) Path aggregation network for instance segmentation.
In Proc. IEEE conference on Computer Vision and Pattern Recognition (CVPR), Salt Lake
City, Utah, USA, pp. 8759-8768.

Lu, S., Wang, B., Wang, H., Chen, L., Linjian, M., Zhang, X. (2019). A real-time object detection
algorithm for video. Computers & Electrical Engineering, Vol. 77, pp. 398-408.

Redmon, J., Divvala, S., Girshick, R., Farhadi, A. (2016). You only look once: Unified, real-time
object detection. In Proc. IEEE Conference on Computer Vision and Pattern Recognition, pp.
779-788.

Redmon, J., Farhadi, S. (2017). YOLO9000: better, faster, stronger. inProceedings - 30th IEEE
Conference on Computer Vision and Pattern Recognition, CVPR, Honolulu, Hawaii, July.

Redmon, J., Farhadi, A. (2018). Yolov3: An Incremental Improvement. arXiv: Computer Vision
and Pattern Recognition.

Ren, S., He, K., Girshick, R., Sun, J. (2015). Faster R-CNN: towards real-time object detection
with region proposal networks. In: Advancesin Neural Information Processing Systems, pp.
91-99.

Rghioui, A., Oumnad, A. (2017). Internet of Things: Visions, Technologies, and Areas of Appli-
cation, Automation, Control and Intelligent Systems, Vol. 5, No. 6, pp. 83-91.

Schrittwieser, J., Antonoglou, I., Hubert, T. et al. (2020). Mastering Atari, Go, chess and shogi
by planning with a learned model. Nature 588, pp. 604-609.

Tan, M., Pang, R., Le, V. Q. (2019). EfficientDet: Scalable and Efficient Object Detec-
tion. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
abs/1911.09070.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, L., Polo-
sukhin, I. (2017). Attention is all you need. in: Advances in Neural Information Processing
Systems, pp. 5998-6008.

Wang, R. J., Li, X., Ling, C. X. (2018). Pelee: A real-time object detection system on mobile
devices. NeurIPS31, pp. 1963-1972.

Wang, C. Y., Mark Liao, H. Y., Wu, Y. H., Chen, P. Y., Hsieh, J. W., Yeh, I. H. (2020). Cspnet: A
new backbone that can enhance learning apability of cnn. In: Proceedings of the IEEE/CVF
conference oncomputer vision and pattern recognition workshops, pp. 390-391.

WEB (a). Overview of model structure about YOLOVvS. 8.
https://github.com/ultralytics/yolovs/issues/280.

WEB (b). YOLOvS5 models. https://github.com/ultralytics/yolovb/issues/2990.

Wilkowski, A., Kasprzak, W., Stefaiczyk, M. (2019). Object detection in the police surveillance
scenario. /textit2019 Federated Conference on Computer Science and Information Systems
(FedCSIS), pp. 363-372.

Yu, J. et al. (2018). Real-time object detection towards high power efficiency. 2018 Design, Au-
tomation & Test in Europe Conference & Exhibition (DATE), pp. 704-708.

Zhao, Z. Q., Zheng, P., Xu, S. T., Wu, X. (2019). Object detection with deep learning: a review.
IEEE Trans. Neural Netw. Learn. Syst., 30(11), pp. 3212-3232.

Received September 7, 2021, accepted September 9, 2021

