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Jānis CĪRULIS
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Abstract. A representative example of a black-box automaton is provided by a (possibly non-
deterministic) automaton with any information about its states ignored. Such an automaton real-
izes a certain many-valued transformation ϕ of input strings available to it into output strings. The
outcome space of a black-box automaton is defined to be the set of all pairs (α, γ) where α is its
input string, and γ ∈ ϕ(α) is any of the corresponding output strings. We show that each outcome
space carries a structure of a tree-ordered poset equipped with two special binary relations and
that there is, up to isomorphisms, a bijective correspondence between such relational structures
and the so called exact black-box automata. Moreover, an otcome space is also a bisemigroup of
certain kind. Virtual states of a black-box automaton also are discussed.
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1 Introduction

Let Σ be some nonempty set considered as an alphabet. As usual, where M is a subset
of Σ, M∗ stands for the set of all finite strings (words) over M , including the empty
string o. The notation α ≤ β for α, β ∈ Σ∗ means that α is a prefix of β. The symbol
|α| stands for the length of a string α. The set of all strings of length |α| is denoted
by Σα. If |α| ≤ |β|, then β|α is the prefix of β of length |α|, and, for L ⊆ Σβ ,
L|α := {γ|α : γ ∈ L}. In particular, Σα = Σβ |α, and L|α = ∅ when L = ∅.

Suppose that X,Y ⊆ Σ and that there is some black box B with one input and
one output which transforms strings from X∗ into strings from Y ∗ working in a dis-
crete time in the following way (“on-line”): when symbols of an input string α are
sequentially presented to the black box, it processes each symbol and produces, also se-
quentially and “without anticipation”, symbols forming an output string γ. In particular,
γ is always of the same length as α. Such a procedure may be considered as a simple
experiment with the black box (Moore, 1956), and the pair (α, γ) can then be taken as
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an outcome of the experiment. We also admit that the response to any given input string
is not necessary uniquely determined by the latter (for reasons unspecified here), but,
for the present, exclude deadlocks. Summing up, this means that B realizes a so called
sequential ND-operator over [X,Y ] (see (Starke, 1969), Definition II.4.3); ‘ND’ stands
for ‘non-deterministic’), i.e., a totally defined multi-valued mapping ϕ of X∗ into Y ∗

such that

(i) if α ∈ X∗, then ϕ(α) ⊆ Y α, and
(ii) if α ≤ γ ∈ Y ∗, then ϕ(α) = ϕ(γ)|α.

We denote by P0(M) the set of nonempty subsets of a set M and identify singleton
subsets with their single elements; thus ϕ may be treated as a function X∗ → P0(Y ∗).

One may try to explain multivalence of ϕ assuming that the black box has some set
of states and that it may be in any of these states at the beginning of an experiment.
Moreover, the states themselves could be non-deterministic, as in the example below.
Generally, any information that allows to diminish the uncertainty in the behavior of
B may be interpreted as a state of B. We shall not need, however, any assumption
concerning states up to Section 3.

Example. Instances of a black box of this kind are provided by any nondeterministic
Mealy automaton—a quintuple A := (X,Y, Z, δ, λ), where X,Y ⊆ Σ and
� X is a set of input symbols,
� Y is a set of output symbols,
� Z is a set of states,
� δ is a many-valued next-state function X × Z → P0(Z),
� λ is a many-valued output function X × Z → P0(Y ),

(cf. Definition II.1.5 in (Starke, 1969)). The behaviour function of A in a state z is a
function Λz : X∗ → P0(Y ∗) defined as follows: Λz(α) is the set of all output strings
A can produce, being in the state z, in response to the input string α. More precisely,
Λz(o) = o and, for all x1, x2, . . . , xm ∈ X and y1, y2, . . . , yn ∈ Y ,

y1y2 · · · yn ∈ λz(x1x2 · · ·xm) if and only if
n = m and, for all i = 1, 2, . . .m, yi ∈ λ(xi, zi),

where z1 = z and zi+1 is any state from δ(xi, zi).
Setting, for a nonempty set of states M , ΛM (α) :=

⋃
(Λz(α) : z ∈M), we obtain

the behaviour function ΛM of A in a “macrostate”M (and of A as a whole ifM = Z).
It is always a sequential ND-operator over [X,Y ], and so any triple (X∗,ΛM , Y

∗) is
in fact a paticular black box. See Part II of (Starke, 1969) for more information on
ND-automata and sequential ND-operators. C

Every black box B can be realized in this way by an ND-automaton, as the following
proposition shows. This suggests a term ‘black-box automaton’ introduced in Section 2
for slightly more abstract black boxes.

Proposition 1.1 ((Starke 1969), Satz II.4.6) To every sequential ND-operator ϕ over
[X,Y ], there are an ND-automaton A over [X ′, Y ′] with X ⊆ X ′ and a nonempty
subset M of its states such that ϕ(α) = ΛM (α) for all α ∈ X∗.
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As noted above, a pair (α, γ) with α ∈ X∗ and γ ∈ ϕ(α) may be thought of as an
outcome of an experiment with the black box. We call the set Φ of all such pairs (which
actually is the graph of ϕ) the outcome space of B. Our purpose in the paper is investi-
gation of the structure of the outcome spaces of black boxes (black-box automata).

In the next section, we give a formal definition of black-box automaton and ascertain
that the outcome space Φ of such an automaton is a tree-ordered poset equipped with
an additional relation, called overriding in (Cı̄rulis, 2002). In Section 3, the so called
virtual states of a black-box automaton are defined essentially as certain ND-operators
similar to the behavior functions ΛM in the above example; it is shown here that the
virtual states form a join semilattice isomorphic to a semilattice of some special subsets
of Φ. The main result of Section 4 states that every tree-ordered poset with overriding is
isomorphic to the outcome space of some black-box automaton; this is a consequence of
a general construction theorem for a black-box automaton from such a poset. However,
the representing automation is not unique (even up to isomorphism), which means that
the description of outcome spaces obtained in Section 2 is still too weak. In Section 5,
discussed are tree-ordered posets with two overriding relations interrelated in a certain
way. Outcome spaces are shown to have even such expanded structure, and it is proved
that two black-box automata are isomorphic if and only if their outcome spaces are iso-
morphic as structures of this kind. Finally, in Section 6, a class of certain tree-ordered
bisemigroups—sets equipped with two semigroup operations is considered. Any black-
box automaton yields a bisemigroup (its outcome space) which belongs to this class,
and every bisemigroup from this class gives rise to a pair of overriding relations inter-
related as in Section 5.

Concluding the section, we mention one more derived structure of a black box that
deserves an interest. Given a black box B, consider a pair (α,K), where α is its input
string andK is a subset of ϕ(α), the set of possible responses to α. It may be associated
with an experimental statement about outcomes of B associated with an input string α
and is true of an outcome (α, γ) if and only γ ∈ K. The set of all such pairs may be
called a statement space of B. Its structure will be investigated in another paper, which
is in preparation.

2 Black-box automata and their outcome spaces

The model of a black box described in Introduction includes some specific details which
are unrelevant for our purposes and make it “too concrete”. We first slightly modify the
model to give it a more algebraic form.

The sets of input and of output strings of a black box, X∗ and Y ∗ respectively, sup-
port the structure of monoid (w.r.t. the concatenation), but they naturally are also rooted
trees. For our purposes, the tree structure of these sets is more important. Algebraically,
a rooted tree may be treated as a poset (T,≤) with bottom in which every initial seg-
ment is a finite chain. It is then easily seen that T is even a lower semilattice, i.e., any
pair of its elements has the greatest lower bound, or meet. Generally, elements of the
poset are interpreted as nodes of a tree, and s ≤ t for s, t ∈ T then means that s lies on
the path from the bottom⊥ to t. (There is also another, the so called CPT interpretation,
when elements of the poset are considered as paths of a tree, and the order ≤, as inclu-
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sion of paths.) The set Σ∗ and its subsets X∗ and Y ∗ become algebraic trees in a more
direct way—when equipped with the relation ‘. . . is a prefix of . . . ’ (see Introduction);
then the greatest common prefix of two strings is their meet. Any nonempty subset of
T which contains together with an element of T also all elements it dominates is called
a subtree of T ; so X∗ and Y ∗ are subtrees of Σ∗.

By now on, by a tree we mean an algebraic rooted tree as explained above—a “tree-
ordered poset”, i.e., a poset with a least element where all initial segments are finite
chains. Every such a tree T can be embedded into a tree of strings, say, Σ∗, i.e., is
isomorphic to a subtree of Σ∗, for a sufficiently large Σ (the size of Σ is determined by
the supremum of degrees (numbers of the successors) of all elements in T ). However, it
will be more convenient to work with the abstract trees. We adapt to them the notation
introduced for Σ∗ at the beginning of the previous section. In particular, |t| now denotes
the height of an element t ∈ T , i.e., the number of elements in the chain [⊥, t] minus
1, where ⊥ stands for the bottom of T . (In Σ∗, the height of a string is equal to its
length.) The set {t ∈ T : |t| = |s|} is denoted by Ts. If |s| ≤ |t|, then the symbol
t|s stands for the single element of height |s| in the chain [⊥, t], and if U ⊆ Tt, then
U |s := {u|s : u ∈ U}.

We now assign a refined meaning to a term usually used informally (and in differing
senses).

Definition 2.1. A black-box automaton is a triple B := (I, ϕ,O), where
� I is a tree (the input tree),
� O is a tree (the output tree),
� ϕ is a function (the behavior of B) I → P0(O) such that

(i) if α ∈ I , then ϕ(α) ⊆ Oα, and
(ii) if α ≤ β ∈ I , then ϕ(α) = ϕ(β)|α.

The graph Φ := {(α, γ) : α ∈ I, β ∈ ϕ(α)} of ϕ is called the outcome space of B.
The automaton B is called exact if the range ϕ(I) of ϕ coincides with O. C

Evidently, the model of a black box discussed in Introduction fits in with this defini-
tion. In I and O, we write o for the least element. Clearly, ϕ(o) = o, and if (α, γ) ∈ Φ,
then |α| = |γ|. The range of ϕ is generally a subtree of O; so, exactness is not a sever
restriction. Notice that trees having elements (nodes) with different degrees (numbers
of successors) are not excluded; in particular, a node in I may have not any successor
at all. Thus, deadlocks also can be simulated in a black-box automaton.

The set Φ is ordered by the componentwise defined relation ≤:

(α, γ) ≤ (β, δ) :≡ α ≤ β and γ ≤ δ, (2.1)

and (o, o) is its bottom element. The inequality (α, γ) ≤ (β, δ) is naturally interpreted
as saying that the outcome (α, γ) is a part of, or included in, the outcome (β, δ).

Lemma 2.2 The poset (Φ,≤, (o, o)) is a tree with meets characterized by

(α1, γ1) ∧ (α2, γ2) =

{
(α1 ∧ α2, γ2|(α1 ∧ α2) if |α1 ∧ α2| ≤ |γ1 ∧ γ2|,
(α1|(γ1 ∧ γ2), γ1 ∧ γ2) if |α1 ∧ α2| ≥ |γ1 ∧ γ2|.
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Proof. As noticed, (o, o) is a bottom element in Φ. Let (β, δ) be a pair in Φ. If (α1, γ1),
(α2, γ2) ≤ (α, γ), then α1, α2 ≤ β, so that α1 and α2 are comparable (as I is a
tree); say, α1 ≤ α2. Likewise, γ1 and γ2 are comparable; then, of course, γ1 ≤ γ2 (as
|α1| = |γ1| and |α2| = |γ2|) and, further, (α1, γ1) ≤ (α2, γ2). Thus the initial segment
of Φ determined by (β, δ) is a chain. The chain is finite, as the height of (β, δ) equals
to |β| (or |δ|, what amounts to the same). So Φ is tree-ordered.

Finally, let (α1, γ2), (α2, γ2) by any elements of Φ. Suppose that |α1 ∧ α2| ≤
|γ1 ∧ γ2|. Then γ1|(α1 ∧ α2) = γ2|(α1 ∧ α2). Consequently, (α1 ∧ α2, γ2|(α1 ∧ α2))
is a lower bound of (α1, γ1) and (α2, γ2). If (β, δ) is one more lower bound, then
β ≤ α1, α2 and β ≤ α1 ∧ α2. Likewise, δ ≤ γ1, γ2; moreover, |δ| = |β| ≤ |α1 ∧ α2|.
Then δ ≤ γ1|(α1 ∧ α2), γ2|(α1 ∧ α2) and, further, (β, δ) ≤ (α1 ∧ α2, γ2|(α1 ∧ α2)),
as required. The opposite case |α1 ∧ α2| ≥ |γ1 ∧ γ2| is treated similarly. ut

Two outcomes (α, γ) and (β, δ) may be considered as alternative if α = β, and the
first of them, as overridden in a sense by the second one if α ≤ β. Let us take a look on
these relationships in a more abstract setting.

Digression 1. Let (P,≤) be a poset. Adapting Definition 2.2 from (Cı̄rulis, 2002), we
say that a preorder relationv on P is an overriding relation (an inclusion ‘p v q’ being
read as ‘p is overridden by q’) if it satisfies the axioms

(i) if p ≤ q, then p v q, (ii) if p v q and p, q ≤ r, then p ≤ q,
(iii) if p v r, then p ‖ q ≤ r for some q,

where ‖ is the equivalence relation induced by the preorder v (i.e., p ‖ q iff p v q and
q v p), and

(iv) if p, q v r and p ∨ q exists, then p ∨ q v r;
this axiom is superfluous in trees and may be omitted in the present context. It is imme-
diate from (ii) that the element q in (iii) is unique; let us denote it by p [ r and consider
as a projection of r onto p.

Let (P,≤,v) be a poset with overriding, or just an o-poset, and let σ be any map
σ of P onto a set R with ‖ as its kernel equivalence: σp = σq iff p ‖ q. The mapping
p 7→ [p]‖ of P onto the quotient set P/‖ is an example. As usual, the preorderv induces
an order relation on P/‖ (by [p]‖ ≤ [q]‖ :≡ p v q), which further induces an order
on R (by σ(p) ≤ σ(q) :≡ [p]‖ ≤ [q]‖). Clearly, σ is then order-preserving. Following
(Cı̄rulis, 2002), we call the obtained poset R a scheme for P ; the mapping ϕ then can
be called a scheme map for P .

So, every scheme is a poset isomorphic to P/‖, and every scheme map σ is charac-
terized by

σ(p) ≤ σ(q) if and only if p v q. (2.2)

Two o-posets (P,≤,v) and (P ′,≤′,v′) are said to be isomorphic if there is a bijection
h : P → P ′ such that p ≤ q iff h(p) ≤′ h(q) and p v q iff h(p) v′ h(q) for all
p, q ∈ P . C

Now consider relations v and ‖ on Φ defined as follows:

(α, γ) v (β, δ) :≡ α ≤ β, (2.3)
(α, γ) ‖ (β, γ) :≡ α = β. (2.4)
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Theorem 2.3. The triple (Φ,≤,v) is a tree-ordered o-poset, the mapping σ : Φ → I
defined by

σ(α, γ) := α, (2.5)

is a scheme map for Φ, ‖ is its kernel equivalence, and I is the corresponding scheme.

Proof. We already know that Φ is tree-ordered (Lemma 2.2). Clearlyv is a preorder on
Φ, and ‖ is the corresponding equivalence relation. The axiom (i) of overriding is imme-
diately fulfilled. For (ii), suppose that (α1, γ1) v (α2, γ2) and that (α1, γ1), (α2, γ2) ≤
(β, γ). Then γ1, γ2 ≤ γ, whence γ1 and γ2 are comparable (O is a tree). But α1 ≤ α2

(see (2.3)); as |α1| = |γ1| and |α2| = |γ2|, it follows that |γ1| ≤ |γ2|; so γ1 ≤ γ2 and,
further, (α1, γ1) ≤ (α2, γ2). For (iii), suppose that (α, γ) v (β, δ). Therefore, α ≤ β
and so |α| ≤ |β| = |δ|. Clearly, then (α, γ) ‖ (α, δ|α) ≤ (β, δ), i.e., the outcome
(α, δ|α) is the projection (α, γ) [ (β, δ). Thus, v is an overriding relation. The asser-
tions about σ and I are evident. ut

We shall see in Sections 5, 6 that Φ has even a richer structure.

3 Virtual states of a black-box automaton

We adapt the definition of an ND-operator over [X,Y ] to black-box automata and call
them virtual states of the latter. In this section, let B = (I, ϕ,O) be a fixed black-box
automaton.

Definition 3.1. A virtual state of B is a function f : I → P0(ϕ(I)) such that
� for every α ∈ I , f(α) ⊆ ϕ(α),
� if α ≤ β ∈ I , then f(α) = f(β)|α.

A virtual state is deterministic if is a univalent function. We say that a virtual state f is
included in a virtual state g (in symbols, f ⊆ g) if f(α) ⊆ g(α)for all α ∈ I, i.e., if the
graph of f is a subset of the graph of g. C

For instance, the behavior function ϕ of B is a virtual state. If B is derived from
an ND-automaton A as in Example of Section 1, then every behavior function ΛM is a
virtual state of B.

Lemma 3.2 Every virtual state of B includes a deterministic virtual state.

Proof. Let f be a virtual state. Call a configuration for f any partial function ω : I → O
such that
– if α ∈ domω, then ω(α) ∈ f(α),
– if α ≤ β ∈ domω, then α ∈ domω and ω(α) = ω(β)|α.
The function that takes o into o and is undefined elsewhere is an example of such con-
figuration. A total configuration for f is a deterministic virtual state included in f , and
conversely. It thus remains to demonstrate that total configurations for f exist. Actually,
we shall prove more:

every configuration for f is included in a total configuration for f .
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Let ω0 be a configuration for f . The union of an arbitrary decreasing chain of config-
urations which include ω0 and are included in f is a configuration of the same kind;
so, by Zorn lemma, ω0 is included in a maximal one. But every maximal such config-
uration is total. Indeed, if a maximal configuration ω for f is not total, then there is an
input element α ∈ domω such that α ≤ β ∈ dom f r domω for some β ∈ I . By the
finiteness condition in trees, we may assume that β is a successor of α. Now let ω′ be
an extension of ω with domω′ = domω ∪ {β} and such that ω′(β) ∈ f(β). This ω′ is
a configuration for f with ω ⊂ ω′; so, ω is not maximal—a contradiction. ut

Recall that the union of an empty family of sets exists and is, by definition, an empty
set. This is why such unions are wxcluded in the following proposition.

Proposition 3.3 The set V of all virtual states is a poset ordered by inclusion and
closed under arbitrary non-empty unions. The deterministic states are just its minimal
elements, and every virtual state is the union of those deterministic virtual states in-
cluded in it.

Proof. Of course, the inclusion relation ⊆ is an order relation on V . Suppose further
that (fj : j ∈ J) is a nonempty family of virtual states and that a many-valued mapping
f : I → ϕ(I) is defined by

for α ∈ I, f(α) :=
⋃

(fj(α) : j ∈ J),

As unions preserve the restriction operation |, f has all characteristic properties of vir-
tual states.

A deterministic virtual state is always minimal. Conversely, let f be a minimal vir-
tual state of B. By the previous lemma, it includes a deterministic one. Then both states
coincide; so f is deterministic. ut

Therefore, the virtual states form an upper semilattice (V,∪, ϕ) with ϕ as the great-
est element. Let us find out how this semilattice is reflected into the outcome space of
B. The next definition is an adaption of Definition 4.1 of (Cı̄rulis, 2002). We remind
that an order ideal (known also as a down or decreasing set) of a poset P is a subset A
such that, for all p, q ∈ P , q ∈ A whenever q ≤ p ∈ A.

Definition 3.4. Let P be an o-poset. An order ideal A of P is said to be
� full if, whenever p, r ∈ A, p v r implies that p ≤ q ‖ r for some q ∈ A,
� extensive if to every p ∈ P there is q ∈ A such that p ‖ q,
� flat if p ‖ q for no distinct p, q ∈ A. C

The set P is itself an order ideal, which is trivially full and extensive. The following
theorem is a variant of Proposition 4.1 in (Cı̄rulis, 2002), stated there without proof,
and is easily proved with help of (2.3) and (2.4).

Theorem 3.5. A subset of Φ is the graph of a virtual state of B if and only if it is a full
and extensive order ideal. The state is deterministic if and only if the ideal is flat.

Proof. Let A be a subset of Φ, and let f be (possibly, a partial and many-valued) map-
ping I → ϕ(I) having A as its graph. Then
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(i) A is an order ideal of Φ
iff, for all (α, γ) ∈ Φ, (β, δ) ∈ A, if (α, γ) ≤ (β, δ), then (α, γ) ∈ A
iff, for all α, β ∈ I and γ ∈ ϕ(α), δ ∈ f(β), if α ≤ β and γ ≤ δ, then γ ∈ f(α)
iff, for all α, β ∈ I and δ ∈ f(β), if α ≤ β, then δ|α ∈ f(α)
iff, for all α, β ∈ I , if α ≤ β, then f(β)|α ⊆ f(α),

(ii) A as an order ideal is full
iff, for all (α, γ), (β, δ) ∈ A, α ≤ β implies that there is (β′, δ′) ∈ A such that
(α, γ) ≤ (β′, δ′) ‖ (β, δ)
iff, for all α, β ∈ I and γ ∈ f(α), δ ∈ f(β), if α ≤ β, then there are β′ ∈ I and
δ′ ∈ f(β′) such that α ≤ β′, γ ≤ δ′ and β′ = β
iff, for all α, β ∈ I and γ ∈ f(α), if α ≤ β, then, for some δ′ ∈ f(β), γ = δ′|α,
iff, for all α, β ∈ I , if α ≤ β, then f(α) ⊆ f(β)|α,

(iii) A as an order ideal is extensive
iff, to every (α, γ) ∈ Φ, there is (β, δ) ∈ A such that (α, γ) ‖ (β, δ)
iff, to every α ∈ I and γ ∈ ϕ(α), there are some β ∈ I and δ ∈ f(β) such that
α = β
iff, to every α ∈ I , there is some δ in f(α),

(iv) A as an order ideal is flat
iff (α, γ) ‖ (β, δ) for no distinct (α, γ), (β, δ) ∈ A
iff, for all (α, γ), (β, δ) ∈ A, if α = β, then γ = δ
iff γ = δ for all α ∈ I and γ ∈ f(α), δ ∈ f(α).

It now follows from (i)–(iii) that A is full and extensive order ideal of Φ if and only
if f is a virtual state of B. The other assertion of the theorem follows from (iv). ut

As ϕ is one of the virtual states of B, it immediately follows that the outcome space
Φ itself is a full and extensive order ideal. Further, the transfer from virtual states to their
graphs is bijective and preserves unions. We thus come to the following conclusion.

Corollary 3.6 Full and extensive ideals of the outcome space Φ form a semilattice
isomorphic to the semilattice of virtual states of B.

4 Back from trees with overriding to black-box automata

We found out in Section 2 that the outcome space of a black-box automaton (bb-
automaton, for short) is a tree-ordered poset with overriding (Theorem 2.3). Let us
call any such a poset an o-tree. Our aim in this section is to show that, conversely, every
o-tree is isomorphic to the outcome o-tree of some black-box automaton.

Lemma 4.1 Let T be a tree, and suppose that

τ be an order-preserving function from T onto some poset (R,≤, 0). (4.1)

If it satisfies the condition

for all s, t ∈ T , if τ(s) ≤ τ(t), then there is u ≤ t such that τ(u) = τ(s), (4.2)

then R is tree-ordered. If τ is also locally injective, i.e., if

for every t ∈ T and all s, s′ ≤ t, s = s′ whenever τ(s) = τ(s′), (4.3)

then |τ(t)| = |t| for every t ∈ T .
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Proof. The initial supppsition (4.1) implies, in particular, that τ(0) ≤ τ(s) for any
s ∈ S and, consequently, τ(0) = 0.

Assume also (4.2) and consider an initial segment [0, r] of R. By surjectivity of τ ,
r = τ(t) for some t ∈ T ; moreover, for every element p of this segment there is an
element s in T such that p = τ(s). In view of (4.2), we may assume that s ≤ t. Thus,
there is a choice function m which takes every element p of [0, r] into an element of
[0, t] ⊆ T so that τ(m(p)) = p. Hence, m is injective, and, since the segment [0, t] is
finite, the segment [0, r] also has to be finite; more exactly, |r| ≤ |t|. Further, if p, p′ ≤ r,
then m(p),m(p′) ≤ t. But [0, t] is a chain; so, m(p) and m(p′) are comparable. Then
τ(m(p)) and τ(m(p′)), i.e., p, p′ are also comparable. Therefore, the segment [0, r] is
a chain. Thus R is a tree.

We noticed that |r| ≤ |t|. If (4.3) also holds, then τ is injective on [0, r]; therefore
the reverse inequality also is fulfilled and |r| = |t|. ut

Let us call any function τ on a tree T with properties (4.1)–(4.3) a projection. For
instance, every scheme map for an o-tree is also a projection; see the step (a1) in the
proof of the following lemma.

Lemma 4.2 Let (T,≤,v) be an tree-ordered poset, and let σ : T → L be its scheme
map. Suppose that given is also a projection τ : T → R.

(a) If a function ϕ : L → P0(R) is defined by ϕ := τσ−1, then (L,ϕ,R) is an exact
black-box automaton.

(b) If, in addition, the condition

for all s, t ∈ T , if s v t and τ(s) ≤ τ(t), then s ≤ t, (4.4)

is fulfilled, then T is isomorphic to the outcome o-tree of the automaton.

Proof. (a) We divide the proof of this part of the theorem into several steps.
(a1) Let T be an o-tree with a scheme L and a scheme map σ : T → L. We are

going to apply the previous lemma. With R := L and τ := σ, (4.1) is evident and the
condition (4.2) is fulfilled due to the axiom (iii) of o-posets (Digression 1). Thus L is
tree ordered. Next, σ is locally injective due to the axiom (ii) of o-posets and (2.2). Thus
|σ(t)| = |t| by the lemma.

(a2) Further, assume that τ is one more projection of T onto some poset (R,≤, 0).
Again, Lemma 4.1 applies and R also is a tree; moreover, |τ(t)| = |t|. Together with
the equality |σ(t)| = |t| obtained in (a1), this yields the equality

|σ(t)| = |τ(t)| for every t ∈ S. (*)

(a3) Next, consider a correspondence ϕ := τσ−1 between L and R; thus, for every
α ∈ L,

ϕ(α) := {τ(t) : σ(t) = α}.

It has the following properties:

(i) ϕ(α) 6= ∅,
for σ, being a scheme map onto L, is surjective.
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(ii) ϕ(α) ⊆ Rα:
if γ ∈ ϕ(α), then γ = τ(t) ∈ R for some t with σ(t) = α, but |γ| = |α| by (*).

(iii) if α ≤ β in L and γ ∈ ϕ(α), then γ ≤ δ for some δ ∈ ϕ(β).
First notice that, as T is an o-poset, to every s′ and t with s′ v t there is t′ ‖ t such
that s′ ≤ t′. It follows that if s v t for some s, t ∈ T , then, for every s′ ‖ s, there
is t′ such that t′ ‖ t and s′ ≤ t′, so, even τ(s′) ≤ τ(t′).
Now suppose that α ≤ β and γ ∈ ϕ(α). Choose s, t ∈ T such that α = σ(s) and
β = σ(t); then s v t (see (2.2)). By the definition of ϕ, there is s′ ∈ S such that
γ = τ(s′) and σ(s′) = σ(s) (i.e., s′ ‖ s). As shown in the preceding paragraph,
then t′ ‖ t and τ(s′) ≤ τ(t′) for some t′; hence σ(t′) = β and γ ≤ τ(t′). Put
δ := τ(t′); then δ ∈ ϕ(β) and γ ≤ δ.

(iv) if α ≤ β in L and δ ∈ ϕ(β), then γ ≤ δ for some γ ∈ ϕ(α).
Notice again that, as T is an o-poset, if s v t′, for some s, t′ ∈ T , then there is s′

such that s ‖ s′ and s′ ≤ t′. It follows that if s v t, then, for every t′ ‖ t there is
s′ ‖ s such that s′ ≤ t′, so, even τ(s′) ≤ τ(t′).
Now suppose that α ≤ β and δ ∈ ϕ(β). Choose s, t ∈ T such that α = σ(s) and
β = σ(t); then s v t by (2.2). By the definition of ϕ, there is t′ ∈ T such that
δ = τ(t′) and σ(t′) = σ(t) (i.e., t′ ‖ t). As shown in the preceding paragraph,
then s′ ‖ s and τ(s′) ≤ τ(t′) for some s′; hence σ(s′) = α and ϕ(s′) ≤ δ. Put
γ := τ(s′); then γ ∈ ϕ(α) and γ ≤ δ.

(v) ϕ(L) = R,
because both σ and τ are surjective. In fact, if γ ∈ ϕ(α) for some α ∈ L, then
γ ∈ τ(σ−1(α)) ⊆ R. Conversely, if γ ∈ R, then γ = τ(t) for some t ∈ R, but
t ∈ σ−1(α) for some α; so γ ∈ ϕ(α) ⊆ ϕ(L).

We conclude from (i) that ϕ is a function L→ P0(R), from (ii), that it satisfies the
condition (i) of Definition 2.1, and from (iii) and (iv), that it satisfies also the condition
(ii) of the definition. So, (L,ϕ,R) is a black-box automaton, which is exact by (v). Thus
(a) is proved.

(b) First notice the following consequence of (4.4):

for all s, t ∈ T , if s ‖ t and τ(s) = τ(t), then s = t. (**)

The outcome space of the constructed automaton is

Φ := {(α, γ) : α ∈ L, γ ∈ ϕ(α)}
= {(σ(s), τ(t)) : s, t ∈ T, τ(t) ∈ ϕ(σ(s))}
= {(σ(s), τ(t)) : s, t ∈ T, σ(t) = σ(s)}
= {(σ(t), τ(t)) : t ∈ T}.

As an o-poset, it is isomorphic to the o-poset T : the function h : t 7→ (σ(t), τ(t)) is an
isomorphism T → Φ. Indeed, it is surjective (by definition), injective (see (**)), and
recall that σ is a scheme map), h(⊥) = (o, o),

h(s) ≤ h(s′) iff (σ(s), τ(s)) ≤ (σ(s′), τ(s′)) iff σ(s) ≤ σ(s′) and τ(s) ≤ τ(s′)

iff s v s′ and τ(s) ≤ τ(s′) iff s ≤ s′
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by (2.1), (2.2), (4.4) and the axiom (i) of overriding, while

h(s) v h(s′) iff (σ(s), τ(s)) v (σ(s′), τ(s′)) iff σ(s) ≤ σ(s′) iff s v s′

by (2.3) and (2.2). This completes the proof. ut

The identity mapping of T onto itself is an instance of a projection τ in the lemma,
which is appropriate for any T . Thus the o-trees admit the following representation the-
orem; according to the proved lemma, the corresponding bb-automaton is (L, σ−1, T ).

Theorem 4.3. Every tree-ordered o-poset is isomorphic to the outcome space of an
exact black-box automaton.

The next theorem shows that in the case when T itself is an outcome o-poset of a
black-box automation, there is another natural choice for τ and R.

Clearly, if a black-box automaton is exact, then it can completely be restored from
the “geometrical” structure of its output space: the latter is a set of ordered pairs, and
the input and output trees of the automaton are respectively the first and the second
projection (in the usual set-theoretic sense) of this set; the behavior function is also
determined by the latter. It is seen from the proof of the subsequent theorem that this
procedure can actually be viewed as a simple particular case of the general construction
of a black-box automaton described in Lemma 4.2. (Recall that a scheme map of a
tree-ordered o-poset is its projection map).

Theorem 4.4. Let (L,ψ,R) be an exact black-box automaton and Ψ, its outcome o-
tree. The function τ : Ψ → R defined by (α, γ) 7→ γ is a projection, and the black-box
automaton determined by Ψ and τ coincides with (L,ψ,R).

Proof. So, assume that (Ψ,≤,v) is the outcome o-poset of an exact bb-automaton
(L,ψ,R). We already know from Theorem 2.3 that the function σ : (α, β) 7→ α is a
scheme homomorphism of T onto L. Now consider the function τ . Clearly, it is order-
preserving and onto, while the condition (4.2) specializes as follows:

for (α, γ), (β, δ) ∈ Ψ, if γ ≤ δ, then there is (α′, γ′) ≤ (β, δ) such that γ′ = γ.

Suppose that indeed (α, γ), (β, δ) ∈ Ψ,and γ ≤ δ. It follows that δ ∈ ψ(β) and |γ| ≤
|δ| = |β|. Hence, β|γ exists and γ = δ|γ ∈ ψ(β|γ). So, the conclusion is fulfilled with
α′ := β|γ and γ′ := γ, and (4.2)holds.

The condition (4.3) takes the form

for all (α, γ), (α′, γ′) ≤ (β, δ), if γ = γ′, then (α, γ) = (α′, γ′),

If (α, γ), (α′, γ′) ≤ (β, δ), and γ = γ′, then |α| = |γ| = |γ′| = |α′| and, as Ψ is a
tree,(α, γ) and (α′, γ) are comparable; hence, also α and α′ are comparable in L. So
α = α′, and (4.3) is fulfilled.

The condition (4.4) takes the form

for (α, γ), (β, δ) ∈ Φ, if α ≤ β, γ ≤ δ, then (α, γ) ≤ (β, δ).
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and is therefore fulfilled in view of the definition (2.1) of ≤ in Ψ.
Following the final part of the proof of Theorem 4.2, we now consider a correspon-

dence ϕ between L and R defined for all α ∈ L by ϕ(α) := {τ(β, δ) : σ(β, δ) = α}.
Then immediately, ϕ(α) = {δ : (β, δ) ∈ Ψ and β = α} = ψ(α) (the initial bb-
automaton is exact). Thus the constructed black-box automaton (L,ϕ,R) coincides
with the original one. ut

According to this theorem, the transfer from a black-box automaton to its outcome
o-tree is reversible: this outcome space completely determines the automaton. On the
other hand, the construction of a black-box automaton from a pair T, τ which was de-
scribed in Lemma 4.2(a) is also reversible in the weaker sense that the outcome space of
the constructed automaton turns out, on an additional condition (4.4), to be isomorphic
to the original o-tree T . This means that, up to isomorphism, this outcome space does
not depend on the choice of the projection τ (and the scheme map σ). However, we
cannot conclude that the constructed automaton itself likewise does not depend, also up
to isomorphism, on this choice. It is seen from Theorem 4.4: an analysis of its proof
shows that, say, the identity map of T instead of the projection τ used there (cf. the
paragraph preceding Theorem 4.3) leads us to a black-box automaton with the output
tree T , generally not similar to the original one, i.e., R.

Therefore, in spite to the positive results obtained above (in particular, Theorem
4.3), the tree-ordered o-posets turn out to be insufficient for characterizing black-box
automata via their outcome spaces. In the next section we deal with richer relational
structures which involve two interrelated overriding relations, and show that they do
the job.

5 Repeated look on outcome spaces

In Lemma 4.2, a scheme of the abstract o-tree T was taken for the income tree of a
potential automaton, but, to isolate the output tree of the latter, we had to introduce an
additional algebraic device, the projection τ , which generally is outer with respect to the
o-tree itself. It will be demonstrated in this section that the projection can be replaced
with a certain binary relation living on T .

We saw in the preceding section that an scheme map of a tree-ordered o-poset is
a projection. The following proposition characterizes connections between scheme and
projection maps more fully. Its proof is immediate.

Proposition 5.1 Let (T,≤, 0) be a tree-ordered poset, v, a binary relation on T , and
τ , a function T → R, where R is a poset. The following assertions are equivalent:

(a) v is an overriding on T and τ is the corresponding scheme map,
(b) τ is a projection and s v t iff τ(s) ≤ τ(t).

Thus, the projection τ in Lemma 4.2 implicitly defines one more overriding relation
on the o-poset T , and is a scheme map for the corresponding o-poset, dual in a sense
to the scheme map σ for T . We thus shall equip a tree, in particular, the outcome set of
a black-box automaton, with a pair of interrelated overriding relations. This allows us
to obtain a complete characterization of the structure of outcome spaces and smoother
representation results for the corresponding abstract algebraic structures.
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Definition 5.2. A double o-poset is a quadruple (P,≤,vl,vr), where (P,≤,vl) and
(P,≤,vr) are o-posets, and

if p vl q and p vr q, then p ≤ q.

Correspondingly, we now speak about left and right overriding relations vl, vr, left
and right equivalences ‖l, ‖r, left and right scheme maps σl, σr and of respective (left
and right) schemes L, R for P .

For short, we call a tree-ordered double o-poset a double o-tree. C

Every o-poset (P,≤,v) can be considered as a double o-poset (P,≤,v,=) or ei-
ther as (P,≤,=,v). Theorem 2.3 and Theorem 4.4, together with Proposition 5.1,
suggest another example.

Proposition 5.3 Let (Φ,≤) be the outcome poset of a black-box automaton (I, ϕ,O).
Consider the relations vl and vr on Φ defined by

(α, γ) vl (β, δ) :≡ α ≤ β, (α, γ) vr (β, δ) :≡ γ ≤ δ. (5.1)

The system (Φ,≤,vl,vr) is a tree-ordered double o-poset, the mappings σl : Φ → I ,
σr : Φ→ O defined by

σl(α, γ) := α, σr(α, γ) := γ (5.2)

being scheme maps for Φ, and I , O are the corresponding schemes.

We say that a double o-poset (P,≤,vl,vr) is isomorphic to (P ′,≤′,v′l,v′r) if
there is a function h : P → P ′ such that

p vl q iff h(p) v′l h(q), p vl q iff h(p) v′r h(q)

(then also p ≤ q iff h(p) ≤ h(q)) and that a black-box automaton (I, ϕ,O) is iso-
morphic to an automaton (I ′, ϕ′, O′) if there are order isomorphisms hl : I → I ′ and
hr : O → O′ such that

γ ∈ ϕ(α) iff hr(γ) ∈ ϕ′(hl(α)). (5.3)

Lemma 5.4 The condition (5.3) is equivalent to any of equalities

hrϕ = ϕ′hl, ϕ
′ = hrϕh

−1
l , ϕ = h−1r ϕ′hl. (5.4)

Proof. First assume that hrϕ = ϕ′hl, which means that {hr(γ) : γ ∈ ϕ(α)} =
ϕ′(hl(α)). If γ ∈ ϕ(α), then hr(γ) ∈ hr(ϕ(α)) = ϕ′(hl(α)). If, conversely, hr(γ) ∈
ϕ′(hl(α)) = hr(ϕ(α)), then there is γ1 ∈ ϕ(α) such that hr(γ) = hr(γ1). As hr is
injective, it follows that γ = γ1, whence γ ∈ ϕ(α). So, (5.3) holds.

Now assume that (5.3) is fulfilled. If γ′ ∈ hr(ϕ(α)), then there is γ ∈ ϕ(a) such
that γ′ = hr(γ). Hence, γ′ ∈ ϕ′(hl(α)). Conversely, if γ′ ∈ ϕ′(hl(α)), then there is γ
such that γ′ = hr(γ), and then hr(γ) ∈ ϕ′(hl(α)). So, γ ∈ ϕ(α), hr(γ) ∈ hr(ϕ(α))
and γ′ ∈ hr(ϕ(α)). Thus, hrϕ = ϕ′hl.

Therefore, (5.3) is equivalent to the first equality in (5.4). Multiplying both sides
of the equality from the left by h−1l , we come to the second one; similarly, the second
equality yields the first one. Likewise the third equality is equivalent to the first one. ut
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The ‘if’ part of the following theorem witnesses that the description of outcome
spaces of bb-automata as double o-trees can be considered as full.

Theorem 5.5. Two black-box automata are isomorphic if and only if they outcome
spaces are isomorphic as double o-trees.

Proof. Suppose that the mappings hl : I → I ′, hr : O → O′ establish isomorphism
of bb-automatons (I, ϕ,O) and (I ′, ϕ′, O′). Consider the function h : Φ → Φ′ defined
by h(α, γ) := (hl(α), hr(γ)). Evidently, it is bijective, as both hl and hr are. Further,
h(α1, γ1) vl h(α2, γ2) iff hl(α1) ≤ hl(α2) iff α1 ≤ α2 iff (α1, γ1) vl (α2, γ2), and
likewise h(α1, γ1) vr h(α2, γ2) iff (α1, γ1) v2 (α2, γ2). It follows that h establishes
isomorphism of the respective outcome double o-trees (Φ,vl,vr) and (Φ′,v′l,v′r).

Now suppose that a function h : Φ→ Φ′ is a double o-poset isomorphism between
the outcome double o-trees of bb-automata (I, ϕ,O) and (I ′, ϕ′, O′). i.e., is bijective
and satisfies equivalences

h(α1, γ1) v′l h(α2, γ2) iff α1 ≤ α2, h(α1, γ1) v′r h(α2, γ2) iff γ1 ≤ γ2 (*)

(see (5.1)). The first one implies that h(α, γ1) ‖′l h(α, γ2) for all α ∈ I and γ1, γ2 ∈ O.
So, the definition

hl(α) = α′ :≡ h(α, γ) = (α′, γ′) for some γ ∈ I, γ′ ∈ I ′

is correct and therefore presents a function hl : I → I ′. Indeed, if it happens that
h(α, γ) = (α′, γ′) and h(α, γ1) = (α′1, γ

′
1), then h(α, γ) ‖′l h(α, γ1), i.e., (α′, γ′) ‖′l

(α′1, γ
′
1), whence α′ = α′1.

This function is
– injective: if hl(α1) = hl(α2), then there is α′ ∈ I ′ such that hl(α1) = α′ =

hl(α2), i.e., h(α1, γ1) = (α′, γ′1 and h(α2, γ2) = (α′, γ′2) for some γ, γ1 ∈ I , γ′, γ′1 ∈
I ′. As (α′, γ′2) ‖′l (α′, γ′2), then h(α1, γ1) ‖′l h(α2, γ2), whence α1 = α2 by (*);

– surjective: for every (α′, γ′) ∈ I ′, there is a pair (α, γ) in Φ such that h(α, γ) =
(α′, γ′), whence hl(α) = α′.
Moreover, hl is an order isomorphism: assuming that h(α1, γ1) = (α′1, γ

′
1) and that

h(α2, γ2) = (α′2, γ
′
2),

α1 ≤ α2 iff (α′1, γ
′
1) vl (α′2, γ

′
2) iff α′1 ≤′ α′2 iff hl(α1) ≤ hl(α2).

by (*), (5.1) and the definition of hl. Likewise, the definition hr(γ) = γ′ :≡ h(α1, γ) =
(α2, γ

′) is correct and presents an order isomorphism hl : O → O′. Finally, notice that
h(α, γ) = (hl(α), hr(γ)) for all α, β. Then (5.3) holds:

γ ∈ ϕ(α) iff (α, γ) ∈ Φ iff h(α, γ) ∈ Φ′

iff (hl(α), hr(γ)) ∈ Φ′ iff hr(γ) ∈ ϕ′(hl(α)).

Thus, the pair of functions hl, hr establish an isomorphism of the two bb-automata. ut

The item (a) in the next theorem is a direct analogue, and consequence, of Lemma
4.2. Its item (b) corresponds to Theorem 4.4.
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Theorem 5.6. Let T := (T,≤,vl,vr) be a tree-ordered double o-poset.

(a) Suppose that σl : T → L is its left scheme map, and σr : T → R is its right scheme
map. If a mapping ϕ : L → P0(R) is defined by ϕ := σrσ

−1
l , then the triple

(L,ϕ,R) is an exact black-box automaton, and T is isomorphic to its outcome
double o-tree.

(b) The black-box automaton determined by any other choice of a pair of scheme maps
for T is isomorphic to (L,ϕ,R).

(c) Every black-box automaton isomorphic to (L,ϕ,R) arises as in (a) by an appro-
priate choice of a pair of scheme maps for T .

Proof. (a) Assume that σl, σr and ϕ are as in the supposition. We are going to apply
Lemma 4.2 with the scheme maps σl, σr standing there for σ and τ , respectively. As
we know from Proposition 5.1, σr is a projection. So, (L,ϕ,R) is an exact black-box
automaton.

The mapping h used in the proof of Theorem 4.2(b) goes also for a double o-
poset isomorphism from T to the outcome double o-poset of the constructed black-
box automaton (compare the equality (4.4) with the characteristic condition on double
o-posets). More accurately, nov h(t) := (σl(t), σr(t)).

(b) Now assume that σ′l : S → L′ and σ′r : S → R′ is another pair of a left and
a right scheme maps for S and that (L′, ϕ′, R′) is the corresponding black-box au-
tomaton. By (a), its outcome double o-tree is isomorphic to T . By Theorem 5.5, the
automaton is then isomorphic to (L,ϕ,R).

(c) Finally, suppose that some black-box automaton (L′, ϕ′, R′) is isomorphic to
(L,ϕ,R), i.e., there are appropriate order isomorphisms hl : L→ L′ and hr : R→ R′.
Then the mapping σ′l : T → L′ defined by σ′l := hlσl is a left scheme map for T with
a scheme L′:

– the relation ‖l is the kernel equivalence of σ′l: s1 ‖l s2 iff σl(s1) = σl(s2) iff
hl(σl(s1)) = hl(σl(s2)).

– σ′l is surjective as both its components are mappings onto.
In addition, the order which σ′l as a scheme map induces on L′ coincides with that
already existing on the output tree L′: σ′l(s) ≤ σ′l(t) in L′ iff σl(s) ≤ σl(t) in L (as hl
is an order isomorphism) iff s vl t in T (as σl is a scheme map).

Dually, the mapping σ′r : T → R′ defined by σ′r := hrσr is a right scheme map for
T with a scheme R′.

It remains to check that ϕ′ is related to σ′l and σ′r in a proper way. We already
know that γ ∈ ϕ(α) iff hr(γ) ∈ ϕ′(hl(α)), i.e., that ϕ′ = hrϕh

−1
l Then σ′r(σ

′
l)
−1 =

hrσrσ
−1
l h−1l = hrϕh

−1
l = ϕ′ by (5.4), as required. ut

We say that a bb-automaton is induced by a double o-tree T if it arises from T as in
(a) with help of any pair of scheme maps.

Corollary 5.7 Two double o-trees are isomorphic if and only if there is a black-box
automaton induced by both of them or, equivalently, if and only if every black-box au-
tomaton induced by one of them is induced also by the other.
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Proof. Assume that a bb-automaton B is induced by double o-trees T and T ′. Then
they are isomorphic, as, by Theorem 5.6, each of them is isomorphic to the associated
double o-tree of B.

Now assume that T is a double o-tree and that a mapping h establishes an isomor-
phism of it with A double o-tree (T ′,≤′,v′l,v′r). Suppose that B′ := (I ′, ϕ′, O′) is an
bb-automaton induced by T ′ with help of scheme maps σ′l : T

′ → I ′ and σ′r : T → O′;
thus, ϕ′ = σ′r(σ

′
l)
−1. Then σ′lh is a left scheme map for T . Indeed, for s, t ∈ T ,

(σ′lh)(s) = (σ′lh)(t) iff σ′l(h(s)) = σ′l(h(t)) iff h(s) ‖′l h(t) iff s ‖l t

(as σ′l is a left scheme map and h is a double o-poset homomorphism). Dually, σ′rh is a
right scheme map for T . Further, (σ′rh)(σ′lh)−1 = σ′rhh

−1(σ′l)
−1 = σ′r(σ

′
l)
−1 = ϕ′.

Therefore, B′ is induced also by T . In fact, every automaton induced by T ′ is similarly
induced by T and conversely. ut

Corollary 5.8 Let T be a double o-tree and B, a black-box automaton. Then T is
isomorphic to the outcome double o-tree of B if and only if B is induced by T .

Proof. So, assume that (Φ,≤,vl,vr) is the outcome space of an automaton B :=
(L,ϕ,R). Let (L,ψ,R) be the induced bb-automaton; so, ψ is defined by ψ(α) :=
{σr(β, δ) : σl(β, δ) = α}. Then immediately, ψ(α) = {δ : (β, δ) ∈ Φ and β = α} =
ψ(α). Thus the constructed black-box automaton (L,ϕ,R) coincides with the original
one. Now suppose that, conversely, B := (I, ϕ,O) is a bb-automaton induced by T .
By Theorem 5.6(a), T is isomorphic to the associated double o-tree of B. ut

6 Outcome space as a bisemigroup

The outcome spaces of black-box automata admit even a richer algebraic structure. Let
Φ be an outcome space of some automaton B; we are going to consider the binary
operations ◦r, ◦l on Φ defined respectively by

(α, γ) ◦l (β, δ) := (α ∧ β, δ|(α ∧ β)), (6.1)
(α, γ) ◦r (β, δ) := (α|(γ ∧ δ), γ ∧ δ). (6.2)

These definitions are correct, for |α ∧ β| ≤ |β| = |δ| and |γ ∧ β| ≤ |γ| = |α|. To
proceed, we need some information on idempotent semigroups (bands).

Digression 2. The natural order ≤ of a band (S, ·) is defined by x ≤ y :≡ xy =
x = yx (equivalently, yxy = x). An element 0 ∈ S is the zero element, i.e., such that
0x = 0 = x0, if and only if it is the least element of S. The relation v on S given by
x v y :≡ xyx = x is reflexive and transitive; we call it the natural preorder of S. A
band S is said to be right normal if the identity xyz = yxz holds in it. If this is the
case, then x ≤ y iff xy = x and x v y iff yx = x. The band is called left normal if
the operation · satisfies the identity xyz = xzy; its natural order is then characterized
by the condition x ≤ y iff yx = x, and its natural preorder, by the condition x v y
iff xy = x. Thus there is a full left-right duality between thel bands of these two types.
See (Howie, 1995), Section 4.4 for more information on bands. C
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It is checked by elementary calculations that the natural preorder of a right normal
band S is an overriding relation relatively to the natural order of S: one can take pr for
q in the axiom (iii), i.e., p [ r = pr in this case. Dually, the natural preorder of a left
normal band also is an overriding relation with p [ r = rp.

A bisemigroup is an algebra with two associative operations. However, if they both
are idempotent, the algebra is usually called a double band.

Definition 6.1. We say that a double band (S, ·l, ·r) is normal if the band (S, ·l) is
right normal and the band (S, ·r) is left normal. A normal double band is a restrictive
bisemigroup (see (Shain, 1965), p. 170) if its pair of operations is associative in the
sense that (x ·l y) ·r z = x ·l (y ·r z) for all x, y, z. C

We thus may speak of the left and the right naturtal orders ≤l,≤r and natural pre-
orders vl,vr of a double band. Now we can return to the above operations ◦l and
◦l.

Theorem 6.2. Let (Φ,≤) be the outcome poset of a black-box automaton. The algebra
(Φ, ◦r, ◦l) is a restrictive semigroup, where both natural orders agree with ≤ and the
natural preorders satisfy (5.1).

Proof. We first prove that the algebra (Φ, ◦l) is a right normal band. The operation ◦l
is idempotent: (α, γ) ◦l (α, γ) = (α, γ|α) = (α, γ). It is also associative:

((α1, γ1) ◦l (α2, γ2)) ◦l (α3, γ3) = (α1 ∧ α2, γ2|(α1 ∧ α2)) ◦l (α3, γ3)

= (α1 ∧ α2 ∧ α3, γ3|(α1 ∧ α2 ∧ α3))

= (α1, γ1) ◦l (α2 ∧ α3, γ3|(α2 ∧ α3)) = (α1, γ1) ◦l ((α2, γ2) ◦l (α3, γ3)).

Likewise,

((α1, γ1) ◦l (α2, γ2)) ◦l (α3, γ3) = (α1 ∧ α2 ∧ α3, γ3|(α1 ∧ α2 ∧ α3))

= ((α2, γ2) ◦l (α1, γ1)) ◦l (α3, γ3),

i.e., the band (Φ, ◦l) is indeed right normal. Evidently, (o, o) is its zero element. Further,

(α1, γ1) ≤l (α2, γ2) iff (α1, γ1) = (α1, γ1) ◦l (α2, γ2)

iff (α1, γ1) = (α1 ∧ α2, γ2|(α1 ∧ α2))

iff (α1 = α1 ∧ α2 and γ1 = γ2|(α1 ∧ α2) = γ2|α1) iff α1 ≤ α2 and γ1 ≤ γ2

and
(α1, γ1) vl (α2, γ2) iff (α1, γ1) = (α2, γ2) ◦l (α1, γ1) iff α1 ≤ α2;

the relations ≤r and vr satisfy dual relationships. Thus ≤l and ≤r agree with ≤ as
required, and (5.1) also holds.

It remains to check the associativity rule for the pair ◦l, ◦r. Actually, we shall show
that both sides of it reduce to the same expression. At first,

((α1, γ1) ◦l (α2, γ2)) ◦r (α3, γ3) = (α1 ∧ α2, γ2|(α1 ∧ α2)) ◦r (α3, γ3)

= ((α1 ∧ α2)|((γ2|(α1 ∧ α2)) ∧ γ3), (γ2|(α1 ∧ α2)) ∧ γ3).
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Consider two cases. If |γ2 ∧ γ3| ≤ |α1 ∧ α2|, then (γ2|(α1 ∧ α2)) ∧ γ3 = γ2 ∧ γ3, for
(γ2|(α1 ∧α2))∧ γ3 ≤ γ2 ∧ γ3 and γ2 ∧ γ3 = γ2|(γ2 ∧ γ3) ≤ γ2|(α1 ∧α2). Therefore,

((α1, γ1) ◦l (α2, γ2)) ◦r (α3, γ3) = ((α1 ∧ α2)|(γ2 ∧ γ3), γ2 ∧ γ3)

in this case. If, on the contrary, |γ2 ∧ γ3| ≥ |α1 ∧ α2|, then (γ2|(α1 ∧ α2)) ∧ γ3 =
((γ2 ∧ γ3)|(α1 ∧ α2)) ∧ γ3 = (γ2 ∧ γ3)|(α1 ∧ α2) and

((α1, γ1) ◦l (α2, γ2)) ◦r (α3, γ3) = (α1 ∧ α2, (γ2 ∧ γ3)|(α1 ∧ α2)).

On the other hand,

(α1, γ1) ◦l ((α2, γ2) ◦r (α3, γ3)) = (α1, γ1) ◦l (α2|(γ2 ∧ γ3), γ2 ∧ γ3)

= (α1 ∧ (α2|(γ2 ∧ γ3)), (γ2 ∧ γ3)|(α1 ∧ (α2|(γ2 ∧ γ3)))).

If |γ2 ∧ γ3| ≤ |α1 ∧ α2|, then α1 ∧ (α2|(γ2 ∧ γ3)) = α1 ∧ ((α1 ∧ α2)|(γ2 ∧ γ3)) =
(α1 ∧ α2)|(γ2 ∧ γ3), whence

(α1, γ1) ◦l ((α2, γ2) ◦r (α3, γ3)) = ((α1 ∧ α2)|(γ2 ∧ γ3), γ2 ∧ γ3).

If |γ2∧γ3| ≥ |α1∧α2|, then α1∧ (α2|(γ2∧γ3)) = α1∧α2, for α1∧ (α2|(γ2∧γ3)) ≤
α1 ∧ α2 and α1 ∧ α2 = α2|(α1 ∧ α2) ≤ α2|(γ2 ∧ γ3). Therefore,

((α1, γ1) ◦l (α2, γ2)) ◦r (α3, γ3) = (α1 ∧ α2, (γ2 ∧ γ3)|(α1 ∧ α2)).

Thus, the associativity holds, and S is a restrictive bisemigroup. ut

The obtained bisemigroup (Φ, ◦l, ◦r) may be called the outcome bisemigroup of a
given black-box-automaton. According to Lemma 2.2, it is tree ordered. Notice that the
double o-poset structure of an outcome space (see Proposition 5.3) has been derived in
this section from its bisemigroup structure.
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